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This paper describes recent progress made in the development and implementation
of a two-dimensional Monte Carlo/PDF/SPH particle method. The approach, which
is applicable to compressible turbulent flows, incorporates elements of smoothed
particle hydrodynamics to extract mean quantities from the particles, including the
mean pressure gradient. A new and efficient algorithm based on Fourier-series ex-
pansions of the SPH kernel is used to compute these means; for a simulatid with
particles the computational work scales purel{&d). A thorough study of numer-
ical errors introduced by the finite series expansion is also performed, and results are
presented which show that these errors scale as expected and can be made negligibly
small using modest computing requirements. The particle method has been used to
simulate a variety of 2D flows, including a stationary turbulent plane wake, flows
under the influence of simple body forces, and an unsteady flow featuring compres-
sion/expansion waves and a pair of decaying vortices. The plane wake calculation
includes comparisons with self-similar experimental data and good agreement is
obtained for the mean velocity and Reynolds stress profil@s199s Academic Press

Key WordsPDF methods; Monte Carlo methods; smoothed particle hydrodynam-
ics; turbulent flow; compressible flow.

1. INTRODUCTION

The probability density function (PDF) approach has become a useful computatit
tool for predicting the properties of turbulent reacting flows [1]. For this class of flows
PDF method has unique advantages over traditional moment-closure methods. In parti
modeling of turbulent transport is unnecessary, and finite-rate nonlinear chemistry ca
treated both exactly and naturally [2, 3].

The majority of work using PDF methods has focused on incompressible flows, altho
the method is known to be applicable to compressible flows as well [4, 5] (“compre
ible” implying that variations in pressure induce corresponding variations in density). C
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possible reason for this is the lack of a general and robust treatment of pressure in the F
framework. While numerous approaches have been successfully used [6-9], they are o
limited in scope or introduce additional complexities into the problem.

Progress has recently been made in addressing this issue with the development
testing of a new PDF formulation applicable to quasi-1D compressible turbulent flow
[10]. In this approach the treatment of pressure is quite general, and is based on ker
estimation techniques derived from smoothed particle hydrodynamics (SPH). The curre
work extends this new approach to 2D and 3D flows.

The decision to use SPH within the PDF formulation is motivated by three reason
The first is compatibility of the two methods. The favored approach for implementin
PDF methods is via Monte Carlo particle-mesh simulation. Monte Carlo simulation i
used primarily because it is an efficient solution method for problems involving larg
dimensionality. In a Monte Carlo/PDF flow simulation, the fluid is represented using
large sample of stochastic particles which mimic the physical behavior of fluid particle:
and properties for these particles are advanced in time according to specified evolut
equations. Simulations using SPH are performed using the same approach [11] (althol
without a mesh), and thus the two methods are similar in their implementation.

A second reason for using SPH is that it allows the pressure to be obtained directly frc
the particles—apart from an equation of state, no additional assumptions are needed
many applications of PDF methods, the approach used to obtain the pressure has bee
couple the Monte Carlo/PDF code to a finite-volume solver which returns the mean press
field [6, 12—14]. Using SPH this external dependence is removed to give a completely se
contained Monte Carlo/PDF code.

A final reason for using SPH is that it is a grid-free approach. All required quantities
including gradients, are calculated without reference to a fixed spatial grid. Complicated flc
patterns are therefore handled easily and naturally by the method. The 2D results presel
in this paper are the first ever obtained using a grid-free Monte Carlo/PDF method.

The main challenge to using SPH within the Monte Carlo/PDF framework has been
reduce its computational cost. SPH is a locallybody method, meaning that each of the
N particles in a given simulation interacts directly with the subset of particles in its locall:
defined neighborhood. In all known applications of SPH, the size of this neighborhoc
(termed thesmoothing lengthis purposely chosen so that the number of neighbors for eacl
particle remains relatively constant, typically on the order of a few dozen or less. Give
this constraint, it is then easy to code an algorithm whose computational work scales li
O(N).

In the Monte Carlo/PDF framework, however, this constraint is unacceptable due to tl
stochastic nature of the problem. Since statistical error in the SPH kernel estimates depe
directly on the number of particld§ which contribute to the estimates, convergence of the
method requires that approach infinityindependent of the smoothing lengiie trivial
implementation of SPH in this situation leads to@ONN) algorithm, which for Iargd\_l
(hence, largeN) is clearly inefficient. The challenge therefore is to seek and develop a
algorithm which implements SPH in this context, but whose computational work scale
purely asO(N) (independent of\T). The previous work [10] described such an algorithm
for 1D problems, but it was not readily extendible to higher dimensions. A3élog N)
tree-based algorithms that work in higher dimensions exist [15, 16], but these typical
have additional overhead associated with them for maintaining and updating the tree d
structure. The new algorithm described in this paper overcomes all these limitations in tt
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it scales purely a®(N), has relatively low overhead, and is easily implemented in any
number of dimensions.

In summary so far, this paper makes three significant contributions to this field of resear
First, it extends the coupled PDF/SPH approach with its general treatment of mean pres:s
to 2D flows. Second, it presents the first 2D results ever obtained using a grid-free Mot
Carlo/PDF method. And third, it presents a new algorithm which allows multidimensione
SPH kernel estimates to be accurately obtaing@d(N) time independent of the smoothing
length.

The paper begins with a brief section presenting relevant background information on P!
methods and SPH. The 2D patrticle evolution equations are also given. In Sections 3 throl
5, the paper moves on to present the new 2D algorithm, to analyze numerical errors thg
introduces, and to compare its computational cost relative to other methods. Following
review of the numerical implementation of the Monte Carlo/PDF method, Section 7 presel
a number of sample 2D results generated using the new method. The paper concludes
a discussion in Section 8 of some variations and extensions to the algorithm.

2. COMBINED PDF/SPH METHOD

A unique feature of the particle method described in this paper is its combination
SPH with a PDF-based Monte Carlo method. Until recently the two techniques have r
been used together, quite possibly solely because of computational limitations. The purp
of this section is to provide a brief description of each technique and show how the tv
methods complement each other.

2.1. PDF Method

In simulations of compressible turbulent flows without combustion, the relevant pdf |
the Lagrangiamass density functiofmdf) of velocity and position, denoted ByV, x; t)
[2]. Two important properties df are

/F(V, X 1) dV = (p(x,1)) 1)

and

Q. x, HF(V. x; t) dV = (pQ) = (p)Q, @

where(p) is the mean fluid densityQ is a random variable (itself a function of velocity,
position, and time), an@ is by definition the Favre average & Both integrals are over
the velocity sample space.

Using the Monte Carlo approadhis represented by an ensembld\$tochastic particles
which are continuously distributed in the domain and which model the behavior of flui
particles. Each particle has properties of velotlty® and positionx*™ (asterisks are used
to indicate these properties are modeled), and from them the discrete Lagrangian md
defined to be

N
FN(V.x:it) = Aam ) §(V — U ™) §(x — x*™), 3)

n=1
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whereAm is the mass of each particlath = M/N for simulation of a fluid of constant
massM). The relationship betwedny andF is [2]

(Fn(V,x; ) =F(V,x;t), allN>1 @)

Some insight into this relationship can be gained by considering the density. Temporar
replacingF with Fy in the integral of Eq. (1) gives, after simplifying,

N
on(X, t) = Amz 8(x — x ™), (5)

n=1

usually referred to as tHe-graineddensity. Equation (4) subsequently implies

(p(X, 1) = (on (X, D). (6)

In a numerical implementation, the right side of this expression can be estimated throu
ensemble averages.

In the 2D implementation the positioff of a particle consists of two coordinaties, x5}
and the velocityJ* has three componerfid;, U5, ui} (where alower case velocity denotes
a fluctuation with respect to the Favre average). These properties evolve according to
modeled system of stochastic equations:

dur = — = 2 gy Ur —Updt+ (Cook)¥2dW (), i=12 (8
FT ) ax — Bo (U =Up) dt + (Cowk)"dWi (), 1 =1, ®)
duj = —Bous dt + (Cowk)Y2 dW(t). ©)

The velocity evolution equations correspond to the simplified Langevin model, a stochas
model for inhomogeneous, incompressible turbulence [3]. Appearing in the equations ¢
various coefficients (determined from the particles) and parameters. Coefficients inclu
the mean pressuk®), the Eulerian Favre-averaged velocitiés and the turbulent kinetic
energyk. These are evaluated at the particle posiiih x5). Depending on the type of
problem being solved, the turbulent frequencydefined age) /k, where(e) is the mean
dissipation) may also be a coefficient. Parameters specified by the user include a unive
constanCy (the valueCo = 2.1is used here), and a drift constgtdefined to b + 2Cy).
The final input sV (t), an isotropic vector Wiener process that is simulated for each particl
at each time step. Details on the simplified Langevin model can be found in Refs. [3, 1
18].

Taken together the modeled particle evolution equations imply an equivalent model
transport equation for the Lagrangian nkdf[2], the derivation of which yields

aF* 9 v = 1 9(P) < i}
S S [ et 00}
Coa)R 82F*

. 10
2 BVJ‘an (10)

0 *
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This equation may subsequently be used to obtain all evolution equations for mome
of velocity (such as Reynolds stresses) corresponding to the original system of parti
evolution equations. Note that this equation is the two-dimensional extension of the o
given in [10], but without the area-effect source terms.

2.2. SPH Method

Solution of the particle evolution equations (7)—(9) requires evaluation of various c
efficients, including(p), V(P), U;, andk, and smoothed particle hydrodynamics offers a
means to accomplish this. Using the grid-free kernel estimation techniques of SPH, th
coefficients are evaluated directly from the particles.

For any fieldQ(r) (random or deterministic), a “smoothed” kernel estimatéQpat the
pointx is given by the integral relation

(QUOI = / QK (x —r. hydr, (11)

where K (r, h) is a user-specified interpolating kernel, and gmeoothing length his a
measure of the kernel width. The subschps added to the angle brackets to distinguish
the quantity from the true expectation and to indicate that it is obtained by using a smoothi
length of magnitudd.

Assuming the fieldQ is represented by a distribution Nfparticles with positiongx*™}
and propertie$Q™}, the integral in Eq. (11) can be estimated using the discrete form [11

(Q))nh =AM Z " ¢ (x—x® h) (12)
)<n> A

with Amthe mass of each particle. Note that smaller valuégdfe more spatially accurate

estimates tgQ(x)), but result in fewer particles giving significant contributions, and hence
more statistical error and bias. (As a side note, for the case of mean density, Eq. (12) gi

(pX)nh = Am

NE

K (x —x*™ h), (13)

n=1

which is precisely the expression obtainedJifr) is replaced by the fine-grained density
on(r)in Eg. (11).
The smoothing kernef (r, h) must satisfy the two properties

/OO K(r,hydr =1 (14)
and
rLiTo K(r,h) =48(), (15)

so that lim_o(QX))n = (Q(X)) [19]. For the purpose of this study, the 2D kernel is also
assumed to be a tensor-product kernel; it can be written in the form

K (x, h) =K (xq, h1) K (%2, hy), (16)
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with h; andh, the smoothing lengths in each coordinate direction. Furthermore, the 1
kernelK has compact supportin thit(r, h) = 0 for |r | > h. This latter property is required
for the 2D algorithm. For future reference, the functional forrK afsed here is [20]

s (L+3Ir)/m@—1ri/h* forr| <h

4 —J 4h
K(r, by = { 0 for|r| > h. (17)

Note thatK is symmetric about =0, and piecewise-quartic with a continuous second
derivative.

3. O(N) FOURIER-SERIES ALGORITHM

This section describes the n&(N) algorithm for computing multidimensional SPH
kernel estimates. The availability of such an algorithm is crucial to the success of tl
combined PDF/SPH approach. As stated previously, the average number of pa_rticles
contributing to each kernel estimate must be made large in order to reduce the statisti
error introduced by the Monte Carlo method. In the 2D simulations performed here, valu
for N on the order of a thousand are necessary to keep statistical fluctuations in mean fl
quantities reasonably small. Clearly then, for a simulation \Wtlparticles, whereN is
large, an?(NN) direct sum implementation for computing kernel estimates is prohibitive
the only feasible way to compute these quantities is vié&aN) algorithm.

The new algorithm is based on series expansions of the kernel. For the purpose of desc
ing the algorithm, consider the example of calculating mean densities via kernel estima
at all particle locations in a two-dimensional regiBn

N

<p(X*(i))>N,h = Zm(n)K (Xi(i) *(n) h ) ( 0 X;(n)’ hz) {i - x* D ¢ R}, (18)

n=1

whereh is written for {h;, h,}, and the tensor-product property of the 2D kernel, Eq. (16),
has been assumed. For generality each particle is allowed to have a uniquafaEke
regionR should be thought of as a subregion of the computational doBaiiris hereafter
assumed to be rectangular with dimensiensandw,, centered axR, and aligned with the
coordinate axes so that

R= xf—%,xf+%}X[x§—%,X§+% (19)

as in Fig. 1.

Because the kernelé are compact, the mean density estimate at each positibn
consists of contributions from a local subset of the particles. More specifically, contributior
to any kernel estimate iR will come only from particles in regio of Fig. 1,

w1 w1
S:|:Xf—7_hl,xﬁ+7+hl:|x|:)(2_7_h2,X2+?+h2 (20)
so that the summation in Eq. (18) can be changed to give

(p(x*D) Z mK (x5 —x; ™, h) K (60 =™, hy)  {i:x*® e R}, (22)

x*MeS



416 WALTER C. WELTON
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L h, s

D

FIG. 1. Computational domai, including a region of intered® and the corresponding region of support
Sfor any kernel estimate iR.

With the summation restricted to particles 8) the range of arguments passed to the

1D kernels is now clearly bounded. For example, the maximum valtwe_’f@f— x; ™| is

hy -+ w1 which occurs it is on the left or right boundary d? andx;"™ is on the opposite
boundary ofS. Given this bound, the kernel may be replaced by a series expansion valid

the intervalr € [—h; — wq, hy 4+ w4], for example,

K(r,hy) = apep(r), (22)

p=0

whereg (r) = {¢p(r)}3., is any set of basis functions that is orthogonal over the interva
[—h1— w1, h1 +w4]. Existence of th&) (N) algorithm subsequently depends on the choice
of ¢(r). In particularg (r) must have the separation property

> bpr —rn) =F <¢><r),2¢<rn>> , eachp, (23)

as will become clear. Examples of function sets satisfying this property are the trigopnomet
basis functions, and polynomial sets such as Legendre or Chebyshev polynomials.

For the remainder of the papg(r) is taken to be the set of trigopnometric basis functions.
With this choice, Eq. (22) gives the Fourier-series expansioﬁfo(rr, h1, ¢1), the periodic
extension oK (r, hy) with period ¢; =2(h; + wj). Because the kernels are symmetric
aboutr = 0, the expansion consists only of cosine terms. Furthermore, the periodicity
KP allows¢; to be reduced tol2, + w1 without consequence, as sketched in Fig. 2. Using
the same proceslﬁ,(r, h,) is replaced withK P(r, h,, £5), wherel, = 2h, +w,. With these
substitutions, the resulting Fourier-series expansion of Eq. (21) is

" 00 . an(x*(i) _X*(n))
(0 = 3 0 [, conf EPE 2

x*MeS p=0

00 o X*(i) _ X*(n)
x &y, cos{ a( 262 2") , (24)

q=0
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I I I
-h,-w, -h, h, h+w,

I‘i l1=2h1+W1 —’|

N ’
~ o Jl_ r

A
K(r.h,), Irl <h+w,

FIG. 2. Periodic extension for the 1D kernﬁl(r, hy), with period¢; = w; + 2h;.

where the Fourier coefficientd, ,, &, } are known functions of the periodé,, >} and the
smoothing lengthghs, hy}.

This equation can be manipulated. Exchanging the order of summation, expanding
cosine terms (applying the separation property) and considering a finite Fourier expansi
yields

M; M,
=5 S0 £ ) o [ £ o)

p=0 q=0 x*MeS Mg

( > m"sie ) + S8, ( > m(“)s’,;s{;ﬂ , (25)

x*MeS x*MeS

in which the following shorthand notation has been used:

) 2 *(I) ) X*(I)
c,, = cos TP . Cy=Ccos 9% ,
E]_ Z2
o[ 2mp® o (2
st =sinf ——— |, s =sin| —=—|.
p ( el Sq £2

In addition, (o (x*)) N » has been changed tp (x*))\ h.m to indicate a finite expansion
up through modeM = {M1, M,}. Because the kernel” are smooth, it is clear that

(26)

Mlliinoo (P))INpM = (PX))nh,  allxe R (27)

Mz— 00

The quantities in parentheses in Eq. (25) can be calculated independently for each m
pair (p, q), so that the work required to compute(x*))n nu for alli : x*@ e R scales
asO(N M;M,), whereN is the number of particles i8. By repeatedly applying Eq. (25)
to different subregions db, all mean densities may be obtainedN M; M) work.



418 WALTER C. WELTON

D

h |

FIG. 3. Domain decomposition for the sample case whith= h, = h and¢; = ¢, = 3h.

A concrete example which clarifies this is now presented. The example consists 0
rectangular domaiiD which is subdivided into a lattice of square cells of side lertgth
whereh; = h, = h. Each subregiofR is chosen to be one cell so that = w, = h and
¢1 = €> = 3h, and each corresponding support reg®therefore consists of the 38 3
group of cells centered abo®, as shown in Fig. 3. Th&l particles are assumed to be
binned according to this set of cells. For each mode paiqgJ, the following steps are
performed:

1. Calculate
(N) AN <N (N) AN <N (N)sh AN (N)sNan
S omvge 30 mvgg. S mUsd Y mOss. @9
x*MeR x*MeR x*MeR x*MeR

for each cellR.
2. Using the quantities from step 1, calculate

(N) AN AN (N) AN N ()N AN (NN
Z M= CpCq- Z m™CpSy Z m™"SpCq- Z mSpSy» (29)

x*MeS x*MeS x*MWeS x*MWeS

corresponding to each regidd This simply involves sums over cells.
3. Use Eq. (25) to add this mode’s contribution to each particle of each r&jion

Steps 1 and 3 both requi@(N) work, whereas the work for step@(L / h)?, is negligible
since the number of cells is always much less than the number of particles. Thus, |
total work for all mode pairs up througii, My) is O(N M;My). AssumingM; and M,
need only be finite and can be chosen independently of the other numerical parameters
assumption which will be validated in the next section), this gives a pdrély) algorithm.

The period¥; and¢, can be made arbitrarily close th By makingw; andw, approach
zero. This simply corresponds to making the computational lattice finer. If the cell siz
in the previous example is reduced g2 units per side, then each cé&l will receive
contributions from particles in thex65 subset of cells centered abdritand the period can
be reduced tolb/2. The primary benefit of having a smaller period is faster convergenc
of (p(X))n.n.m 1O {p(X))n.n With respect to the number of modes.
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For practical applications, testing has shown that choosing the number of modes in e:
direction to be on the order of four gives sufficient resolution. Calculation of gradient
requires somewhat higher resolution—on the order of eight modes. As will be shown
Section 5, these requirements are quite modest and allow for efficient calculation of the :
kernel estimates.

4. ERROR ANALYSIS

As of this point the proper choice of periotisand number of modeld; has not yet been
addressed. In this section, an error analysis is performed which yields specific requireme
for these parameters given the smoothing lenbths

Two types of error will be studied: relative error and spatial error. The former is useful fc
estimating how close the approximated kernel estimatés 1))y n.m come to the original
desired estimateg (x*))n n, whereas the latter is studied to determine qualitative effects
of the algorithm on convergence of the method.

4.1. Relative Error

The finite Fourier representation &f in Eq. (25) corresponds to a modified 1D kernel
K'(r, h, £, M) given by

M
2
R'(rh. 0. M) = E ép(h,ﬁ)cos(nTpr) for|r| <¢/2 (30)
9 b b - p:O
0 for|r| > ¢/2.

A relative errorEg can then be defined as

(2 R
Er E/ [K'(r,h, £, M) —K(r, h)|dr, (31)
—0/2

whereEg depends oh, ¢, andM. This error is simply a measure of how well the modified
kernel represents the original kernel, and hence, how ¢0s@) N n.m Will be to (o (X)) n.h-
The dependence d&r on the parametetss, £, andM takes the form

ER<M,f]> ~c<'v;h)q, (32)

where the exponemt > 1 is determined by the smoothnesskofIn particular, ifK hasj
continuous derivatives overJ /2, £/2], thenq is expected to bg + 2. Figure 4 plot€Er
versusMh/¢ for the piecewise quartic kernel used in this study, Eq. (17). Since the kern
has a continuous second derivative everywhegrsghould be 4. This agrees with the plot
which clearly shows @M h/¢)~* scaling for largeMh/£. Note that calculation of gradients
would reduce this scaling tdvih/£)~3, and hence, more modes are required to achieve the
same level of resolution.

Equation (32) yields a number of observations:

1. The nondimensional groudh/¢ must be large foEg to be small.
2. To maintain a given tolerander, M must scale ag/ h.
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Relative Error, E,

: M=1..1024
0% hr=/2.1/32

10-12E ol Lol Lol [T | MR R
10% 10" 10° 10' 10° 10°
Scaled Number of Modes, Mh/!

FIG. 4. Computed relative error for the piecewise quadratic kernel, Eq. (17).

3. With M constantERg scales ag¢/ h)9.
4. If ¢ scales withh, thenEr becomes independent &f h.

The first of these relates to the abilityléf to resolveK . Since the length scale f& relative

to the period ish/¢, modes up through at leaét(¢/ h) are needed foK to be accurately

resolved. ThuskEg decreases as the total number of modes becomes large relatjie. to

The second and third observations are intuitive—makipg smaller lowers minimum

mode resolution requirements and therefore decreases the relative error for dgien

best¢ may scale a® (h) (provided? > 2h), in which case the fourth observation applies.
It can be expected that relative errors in kernel estimates sclg.&s 1D, for example,

B = maxi(QC))nnm — (QOO)Nhl ~ aER(M, é) (33)
where the coefficient depends on the quantityQ). This behavior is confirmed in Fig. 5
which shows mean density relative errors for a 1D static test for the two ¢asésand
¢ =2.5h. To perform the test, 32,768 particles were deterministically positioned accordir
to a predefined density field and the mean density kernel estimates bagsd, én and
K'(r, h, ¢, M) were then compared to determikeg, as in Eq. (33). The number of modes
M was varied between 2 and 256, and the normalized smoothing léndtiwas varied
between}1 and%. Each plot shows the behavior Bf,y versus the relevant scaling param-
eter:Mh/¢ for the case& = L; M for the case& = 2.5h. In both plots the scaling behavior
is as expected. Note also the qualitative similarity between the/caske and Fig. 4, which
supports Eq. (33). (The stair-stepping effect visible in the top plot arises due to couplil
between the predefined density field chosen for this test and the periodic kernel; it is not
artifact of the Fourier-series algorithm.)
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107 h=1/4.1/128 E

1042: MR | MRS | PRSI | Ll N
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FIG.5. Mean density relative erroE,,,, for a 1D static test case usilg= 32,768 particles.

4.2. Spatial Error

The dependence of spatial error on the paramétetsandM is now discussed. For any
quantity Q this error is defined as

Ho = (Q)n — (Q)h=o0, (34)

where(Q) is given by Eq. (11). Convergence of the spatial error is guaranteed if the kern
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satisfies properties (14) and (15). For example, the spatial error for symmetric kernels s
asK scales a®)(h?), whereh is the normalized smoothing lengtyL. Two important
questions to therefore ask are

1. Does the modified kernél’ satisfy these properties?
2. If so, what is the scaling dflg with h?

It is straightforward to show tha&l’ satisfies the normalization property, Eq. (14), &bir
choices ot, £, andM, since only the mode = 0 contributes to the integral:

22 ¢/2

/ K'(r,h, ¢, Mydr =

oo —£/2

ao(h, £)dr :e&,:z{%/

K(r, h) dr} =1 (35

—¢/2

The second property requires that approach a delta function &sapproaches zero. In
contrast to the previous property, thisnist guaranteed for arbitrary choices 6and M.

An obvious example i#1 = 0 and¢ is a constant independenttof This function does not
even depend upom, and hence, cannot satisfy property (15). It can be satisfied, howeve
by requiring that eithet scale as, or M scale ad./h. The first possibility corresponds to

a simple delta sequence f&r ash approaches zero, and has the advantage of being vali
for any M. The second possibility, although valid in theory, can be rejected from a practic
standpoint since it results in an inefficient algorithmhasecomes small. The requirement
¢ = O(h) is thus established which allow§ to satisfy the necessary properties of kernels
while also taking into account practical considerations.

Given that¢ = O(h), the kernelK ' is valid for all choices ofM, and spatial error is
guaranteed to converge Bsapproaches zero. As it appears in Eq. (30)js symmetric
and thus one would expetig to scale a0 (h?). In the numerical implementation of
the O(N) algorithm, however, the actual kernel used is asymmetric due to phase shiftin
Figure 6 illustrates this for the cage= 3h andM = 2. The solid curves show the modified
kernel that would be used to compute kernel estimates at both the center and extreme
of the one-dimensional regioR. The kernel used at the centerRfis symmetric, but the

=3h
M=2

Exact, Q
Fourier, R’

| N NN

: h w=h : h ;

: N !

| R :
S

FIG. 6. Kernel asymmetry for the cage= 3h, M = 2.
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off-center one (which is phase-shifted hy2) is clearly not symmetric. Consequently,
if M is finite then the scaling oHo will change toO(h) in the limit ash approaches
zero.

This behavior shows up well in Fig. 7, which presents scalingfl@i/ersusﬁ as deter-
mined from both 1D and 2D numerical tests. These tests involve deterministically positio
ing a large number of particles according to a known density field and then measuring err
in the mean density kernel estimates relative to the analytic values. The actual numbe!
particles used varies for each valueho&nd is chosen so that the bias is small (less than
1%) relative to the measured spatial error. The top two plots refer to the 1D test, and t
bottom two are for the 2D test. On the left is the scaling that results if the original kerne
K is used (corresponding to direct summation); in both 1D and 200K as expected.
On the right are results using the new algorithm wits 3h andM ranging from 2 to 16.
For largeM (M > 8) the scaling remains close C@(ﬁz) over the range oh considered.
For smallM, however, the qualitative change(tlxﬁ) scaling is evident. FOM = 2, the
change occurs at relatively large valuei?((tomparable to those which would be used in
actual simulations). FOM = 4, the change occurs at valuestoimore than one order of
magnitude smaller (for the 2D case the scaling is just beginning to “peel off” at the smalle
value ofh).
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FIG. 7. Spatial error scalings in 1D and 2D using (a) pure SPH and (b) Fourier-series algorithin=wih.
Dotted lines show reference slopes.
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Judging from the behavior of these re_sults,dih(é?) scaling can be recovered for all
by allowingM to increase appropriately aslecreases, with the precise form of the scaling
dependent on the kernKl. To determine this scaling, the spatial error is written in the form

Hq = g(E(@)h + O(h?), (36)

with g(0) = 0. For smallEq,, g will scale asE g, to some positive power, and numerical
experiments have shown this power to be close to 1. Taking it to be identically one leads
arequired scaling/ ~ h=2/4, Note that this scaling need only be implemented in the limit
of smallh. For a large working range of the desired(h?) scaling will still be observed
given a reasonable value bf (sayM = 4). In addition, the qualitative change in scaling
is further delayed by using smaller periods; the results in Fig. 7 arefoBh, whereas in
typical simulationg is about 2.28.

4.3. Summary

Two different types of error have been studied in this section. Relative error, a meast
of how well kernel estimates obtained using the Fourier-series algorithm compare to t
original SPH estimates, was shown to scale as the nondimensional igiopto the —4
power for the kernel used in this study. Spatial error, the deterministic error caused by us
a finite smoothing length, was shown to converge for the new algorithm fivt grovided
¢ = O(h). With M constant, the scaling is initiall(h?) and then changes t0(h) ash
approaches zero. This change in scaling, however, has minimal impact, since for reason
values ofM it occurs beyond the typical working rangeﬁ)f

5. COMPUTATIONAL COST COMPARISON

This section compares the computational cost of the new Fourier-series algorithm
other algorithms used with SPH. The dependence of computational work on the numbel
particles is presented for both one- and two-dimensional tests. Although the focus of
paper is on 2D, the 1D results provide a meaningful baseline for comparison.

5.1. Computational Costin 1D

The Fourier-series algorithm is easily implemented in one dimension, and offers mu
improved performance compared to a direct summation algorithm. Figure 8 shows t
scaling of computational work in 1D for various methods. The test used to determine tl
scaling simply involved calculating mean densities as per Egs. (13) and (25) for a fix
numberN of deterministically positioned particles. For cases witltemall, the test was
performed multiple times to increase the timing resolution. The vertical scale is the CF
time required per particle, measured in seconds. This is a useful performance indice
since any method will scale at least@¢éN). This quantity is plotted versus, the average
number of particles contributing to each kernel estimate. (In D dimensloasN (h/L)P)

In Monte Carlo/PDF simulations of fluid flows is a key parameter controlling the level of
statistical error. For the direct summation algorithm, it is also the key parameter determini
the expense of the method.

As expected, the scaling of the CPU time per patrticle \Witis linear for the direct
summation algorithm, whereas the Fourier-series algorithm is independgnOﬁU time
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FIG.8. Comparison of computational cost for various 1D algorithms: (a) direct summation; (b) Taylor-series
(c) Fourier-series wittM = 4 andM = 8.

per particle does increase b is made larger, as Fig. 8 shows. The intersection of the
Fourier-series and direct summation curves, although not explicitly shown on the plot,
roughly atN ~ 1. even withM = 8. If a small amount of relative error is acceptable, then
the Fourier-series algorithm is clearly a superior choice over direct summation for SP
kernel estimation.

Also shown on the plot is the scaling for the Taylor-series algorithm described in [10
In 1D it is approximately 2—3 times more efficient than the Fourier-series algorithm, and
also has zero relative error. It is therefore the method of choice for 1D problems. In high
dimensions, however, its scaling is not as go6q Nl\Tl/Z) in 2D) and its implementation
is also difficult.

5.2. Computational Cost in 2D

Figure 9 shows computational cost scalings for various two-dimensional algorithm
The test used here is the same: measure the CPU time needed to calculate all 2D
density kernel estimates for a set Wf deterministically positioned particles. As in 1D,
the work per particle increases linearly wibh for the direct summation algorithm and
remains constant for the Fourier-series algorithm. Two sets of curves are presented for
Fourier-series algorithm, and they are labeled “Fourier—Fourier” and “Fourier—Taylor.” Th
former corresponds to the algorithm described in Section 3 (in which both 1D kernels a
expanded in Fourier-series), whereas the latter is a modification to the algorithm that
described in Section 8 (only one kernel is expanded). In this section focus is still on t
“Fourier—Fourier” implementation.

Compared to 1D, computational cost for the Fourier-series algorithm is more by a fact
of about five for the two cases shown, a consequence of the scaling changirn@ fiMm)
to O(N M?). Relative to direct summation, however, the algorithm is still superior. The
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intersection of their respective curves is at abbutr 5, whereas the typical operating
region forN in Monte Carlo/PDF simulations beginslﬁt% 100[21]. Theresults presented
in Section 7 havé\ on the order of 1000, corresponding to a computational savings of twi
orders of magnitude over direct summation.

6. NUMERICAL IMPLEMENTATION

Numerical implementation of the combined PDF/SPH method is straightforward. At th
start of a simulation particles are distributed in the domain and their properties are ¢
according to a specified initial condition. This initial condition can be either deterministi
orrandom. In the latter case, requirements are imposed on statistical moments of quantit
for example, the initial mean velocity field may be specified everywhere in the domain. Tt
initial particle properties are then random variables having these moments. With the init
condition in place, the particle simulation is then advanced in time. At each time step tt
involves computing mean coefficients from the current particle distribution via SPH kern
estimates, enforcing boundary conditions, and integrating the stochastic particle evolut
equations forward in time.

6.1. Evaluation of Coefficients

Coefficients for each of thH particles are calculated using the Fourier-series algorithrr
and include(p), V(P), U;, andk. (The special case af being a coefficient is described
in Section 7.) The mean densities are obtained using Eq. (13), and mean velocities
turbulent kinetic energies are obtained using appropriate forms of Eq. (12). Calculation
the mean pressure gradient is performed using a modified approach which derives from
equation of state. For the isentropic flows considered in this paper, the mean pressure
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density are related through

P Y
<<>> _ <<p>> , (37)
Po Po
wherey is the ratio of specific heats, afid andpg are reference values. From this equation
of state, the pressure gradient is obtained using

V(P) =y—V{p). (38)

This form is used for two reasons. First, it has the advantage of having the density insi
the gradient operator [11] and is thus more accurate. Second, it is computationally efficie
within the context of the Fourier-series algorithW{p) can be obtained simultaneously
along with (p) by simply replacing the Fourier coefficierdig for the 1D kernelK with
those for its derivativeh, = (277/¢) pa,.

6.2. Boundary Conditions

Two types of boundary conditions are presently implemented in the 2D particle metho
periodic and inflow/outflow. Unlike grid-based methods which apply boundary condition
on grid points, the particle method enforces these conditions directly using particles. Tt
is consistent with the fully Lagrangian framework of the method.

Periodic boundary conditions are easy to implement and have been used extensiv
during development and testing of the method. A particle which exits the domain along o
boundary simply reenters from the opposite side with the same properties. The kerne
also extended periodically.

Inflow/outflow boundary conditions are more difficult to implement but make possible
the simulation of more realistic flow problems. The implementation used here is the 2
extension of the one presented in [10]. Since the method is applicable to compressi
flows, a characteristic-based approach is used [22, 23]. The approach involves determir
values for incoming and outgoing characteristics at the inlet and outlet boundaries. Valt
for characteristics exiting the domain are obtained from the interior particles using straig
kernel estimates, while values for those entering are determined from the applied physi
boundary conditions (such as a mean velocity profile at the inlet or an exit pressure at
outlet). Actual values for the applied boundary conditions are then computed from the
two sets of characteristics using standard methods.

Rectangular buffer zones upstream of the inlet and downstream of the outlet are use
enforce the boundary conditions. Within these zones, particles are distributed based u
the calculated boundary values for density, velocity, and other variables (which depend
the type of flow). The two main advantages of this approach are that kernel estimates
all interior particles can be obtained using the same method (no special treatment mus
made for particles near the boundaries), and particles will flow naturally into and out of tt
domain. Full details of the inflow/outflow implementation are available in Ref. [10].

6.3. Predictor/Corrector Scheme

The stochastic system of evolution equations is integrated forward in time using a we
second-order accurate two-step scheme. At the beginning of a time step, all coefficients
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computed from the current particle distribution, and the evolution equations are integrat
forward in time to yield predicted values for each particle property. Predicted values for ti
coefficients are then obtained from the new particle properties and averaged with the ini
coefficients. Finally, the evolution equations are integrated forward in time as before, but tl
time using the averaged coefficients to obtain corrected values for the particle properti
Using this scheme with a fixed time-stey, the temporal error in mean quantities will
scale ag)(At?) [10, 24].

7. SAMPLE 2D RESULTS

The combined PDF/SPH method has been used to obtain results for a variety of .
flow problems, and this section presents a sampling of these results. Examples incluc
stationary turbulent plane wake, hydrostatic flows under the influence of body forces, an
fully unsteady flow featuring compression/expansion waves and a pair of decaying vortic
These examples serve to demonstrate the robustness of the method, as well as its feasi
in terms of required computational resources.

7.1. 2D Plane Wake

The particle code has been used to simulate the spatial evolution of the two-dimensio
turbulent plane wake behind a circular cylinder. This is a problem which has been extensiv
studied in the laboratory and for which much experimental data exist. Comparisons of t
particle code results are made to some of this data. The problem also provides a meanin
test of the particle code’s ability to simulate a flow of practical importance.

7.1.1. Background

Figure 10 shows the physical layout of the problem. A cylinder is placed in a uniforr
flow of speedUg so as to produce a developing turbulent wake downstream. The veloci
defectUp at the center of the wake gradually decreases with downstream distance, &
the width of the wake, shown @s grows as the turbulent fluid mixes and spreads into the
surrounding freestream flow. The precise definitions gfandé are

Up(x1) = Ug — Us(xg, 0), (39)
U1(x1, 8) = Ug — UDEX”. (40)

Both theoretical and experimental observations have shown that the 2D wake exhik
asymptotic self-similarity in the limit ag; — co. In this limit, transverse profiles of mean
velocity and Reynolds stresses are fully characterized by the pararietet$y, ands
shownin Fig. 10. Givenvalues for these parameters at a statsurfdficiently far downstream
from the cylinder, the mean streamwise velocity scales as

U1(x1, X2) = Ug — Up(x0) f (), (41)
while the Reynolds stresses scale as
Uitj (X1, X2) = UB (X0)G;j (). (42)

Here, the similarity variable is definedx,/s.
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FIG. 10. Physical setup of 2D plane wake problem, showing the paramétend, ands.

Wygnanskiet al. [25] found that the functiorf (n) was universal; different wake gen-
erators gave self-similar mean velocity distributions which all yielded the same function
formfor f. In particular, an excellent fit to their experimental data was provided by the forn

f(n) = exp(—0.637)% — 0.0567%), (43)

which is plotted in Fig. 11. The Reynolds stresses were found to not be universal. Fol
given wake generator, the evolutionipii; did become self-similar, but different generators
led to different forms foig;; . Some insight into this behavior is gained through the mean
streamwise momentum equation. AssumingP)/ax; is zero, it leads to the following
relationship betweeri andg;,,

012(n) = —Spf, (44)
where
1d Ugd
- 53¢ (0) (49)

is thespreading rate The value ofS depends on the type of wake generator used; exper
iments for a circular cylinder giv&é = 0.082 [25]. The curve fog,, based on this value

of Sand the functionf defined in Eq. (43) is also plotted in Fig. 11. The remaining three
curves in the figure show the scaled normal stresses. The data for these come from circ
cylinder wake experiments performed by Townsend [26].

7.1.2. Varyingw Implementation

A requirement for self-similarity is that the turbulence time scale be proportional to th
mean flow time scale. The former is given bydand is typically assumed constant across
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FIG. 11. Scaled experimental profiles for 2D plane wake. Mean velocity and shear stress data are fr
Wygnanskiet al.[25], and normal stress data are from Townsend [26].

the flow [17], while the latter is characterized &Up. The requirement is, therefore,

0 = w*(Up/é), (46)

wherew* is a constant. Using this forma is a coefficient which varies with downstream
position, and it must be computed for each particle.

The procedure to compute is straightforward. After multiplying the numerator and
denominator of Eq. (46) byp and recognizing thalp - § is proportional to the velocity
flux defectF, this gives

w=cUZ/F. (47)

BothUp and F are computed directly from the particles using 1D kernel estimates. Definin
U" = Ug — U;™, these estimates are

1 .
Up (x I(l)) _ m Z m(n)U(n)K( *(i) Xis(n)’ hy)K (0— X;‘(n) hz), (48)
1
_ L N -
Fog0) = L Z MOOOR (0~ %™ hy), (49)

(p(x") ==

< *(I) Z m(n) K *(I) _ Xik(rl)7 hl) K (0 *(n) h )’ (50)

;) Zm(”)K x5O —x;™ hy), (51)
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andL, is the height of the domain. Note th&twill incur some error since the height is
finite. This error decreases rapidly thoughLass increased (it is negligible for the results
shown in this section).

The constant; can be related t@* through Eq. (41) in that the ratiy /w* is just the
integral of f () over alln. Using the form off given in Eq. (43) this ratio is 2.06, and so
the final relationship fow is

w =2.060"U3/F. (52)

7.1.3. Boundary Conditions

Numerical simulation of the wake is performed in a rectangular domain, with inflow an
outflow boundary conditions implemented on the left and right sides, and periodic bounde
conditions used on the top and bottom. The inlet boundary condition requires (as an inp
profiles forUy, uiuj, and(P) (or (p)). The choice of these is somewhat arbitrary. Ideally,
they should have the same general shape as the experimental profiles, yet still be sufficie
different to show that they can evolve to ones that agree well with experiment. The scal
inlet profiles forU, andu; u; have been made piecewise linear functions, as Fig. 12 show:
All three normal stresses have the same profile. Peak values for the scaled shear and no
stresses were chosen to be 0.05 and 0.10, respectively.

Given these scaled profiles, orillg, Up, andé need be specified at the inlet. The inlet
profile for pressure is determined using the steady-state cross-stream momentum equa

Py ~

(o) +us o (53)
Sinceus3 is small relative to the other terms, the inlet profile {& is nearly uniform. For
the outlet boundary condition the only flow quantity which must specified is the pressur
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FIG. 12. Specified inlet profiles (scaled) for 2D plane wake problem.
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and it is assumed constant and equaPgo This is a reasonable assumption simgeis
approximately zero at the outlet.

7.1.4. Numerical Results

The simulation for which results will be presented was performed in a domain of leng
L; =6.0 and height , =1.5. A length of 6.0 allows for sufficient evolution of the wake be-
yond the inlet and also leaves space to study profiles over a reasonable range of downstr
stations. The height of 1.5 is large enough so that profiles do not merge across the top
bottom boundaries (a potential problem when using periodic boundary conditions on the
boundaries). The smoothing lengths (unnormalized) used in the simulatiorhwefeé
andh, = 1—16. A larger value can be used fbg since variations in flow quantities are sig-
nificantly smaller in the streamwise direction. The number of particles initially positione
(uniformly) in the domain was 1,180,000. Compared to a particle-mesh implementation, tl
corresponds to a 48 24 grid of cells, with about 1000 particles per cell. The initial mean
and fluctuating velocities for all particles were based on the inlet profiles. The simulatic
was integrated out to tinie = 40.0 using a time step of 0.01. This time step allows sufficient
resolution of the turbulent time scale, thatiat <« 1 for the range of in this problem. To
reduce statistical error, time-averaging was performed on all mean quantities of interest fr
T = 15.0 (by which time all the particles initially in the domain had exited) ufiti= 40.0.

At the inlet, the free-stream velocityg was set to 0.6, the centerline velocity defdgt to
0.3, and the wake widthito 0.125. The cross-stream smoothing Iengtlg%d‘s adequate to
resolve the inlet profiles. Finally, the constasitwas set to 0.24. This value was selected
to make the computed peak shear stress match the experimental value.

Figure 13 compares scaled mean velocity profiles obtained using the particle code
the experimental profile of Wygnanskt al. The overall agreement across the wake is
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FIG. 13. Scaled profiles of); for the 2D plane wake, with* = 0.24. The simulation was performed using
1,180,000 particles and smoothing lengths= % andh, = Tle The fields have been time-averaged.
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FIG. 14. Scaled profiles ofi,u, for a 2D plane wake simulation with 1,180,000 particles and smoothing
lengthsh; = 1 andh, = . The fields have been time-averaged.

very good. The only noticeable discrepancy is at the edge of the wake, where the parti
code slightly underpredicts the profile width. The 10 profiles plotted in the figure wer
measured at streamwise positions ranging fsgm= 3.0 to x; = 5.7, and over this range
the self-similarity inJ is clearly visible.

Scaled shear stress profiles are shown in Fig. 14. Once again they show excellent s
similarity, and the scaled curve agrees well with the experimental data. The shear stres
somewhat underpredicted at the edge to give a slightly narrower turbulent region, but tl
is expected of the simplified Langevin model [17].

The normal stresses are plotted in Fig. 15. Compared to their initially isotropic state
the inlet, the stresses do indeed evolve to reasonable profiles, and the scaled curves
sufficiently close together to justify self-similarity. Although the agreement with exper
imental data is not as good here as with the previous quantities, it is consistent wi
past behavior of the simplified Langevin model. Plane wake computations performed |
Haworth and Pope [17] showed that this model, as well as numerous others, put too mt
energy into the streamwise component, and tifuis overpredicted. Figure 15 also shows
that the stresses do not decay to zero at the edge of the wake. This is purely a consequen
bias in the particle simulation (and part of the reason \ﬁh’;z made large). Understanding
sources of bias in PDF computations was recently studied in [27].

Figure 16, the last in the group for this test problem, shows the spatial evolution of vario
wake quantities including the centerline defect velocity, the wake width, omega, and tl
edge velocity. In the downstream portion of the domain, ligtands evolve close to their
expected rates:

Up (1) ~ (X1 — X0) %%, (54)
8(X1) ~ (X1 — Xo) 0. (55)

Dashed lines in the figure are least-squares curvefits of this form obtained by fitting de
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FIG. 15. Scaled profiles oﬁ,z for the 2D plane wake, with* = 0.24. The simulation was performed using
1,180,000 particles and smoothing lengths= % andh, = Tle The fields have been time-averaged.

in the rangex; € [3,6]. (The same value 0Xp is used in both fits.) Of coursé)p
and é cannot be expected to show the proper evolution in the upstream portion of tl
domain.

The edge velocity is plotted at the top of Fig. 16. For an incompressible flow this shou
ideally remain constant. In the current simulation though, the density increases slightly w
downstream position which leads to the decaWin The majority of the decay is in the
upstream portion, where the density changes most rapidly, although the actual change
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is only about 1%. Over the region used for studying profiles (between the dotted vertic
lines), the variation itJg is less than half of one percent.

7.2. Hydrostatic Flows with Body Forces

The particle method’s ability to handle body forces has been studied through two sta
test problems. In each of these, the effect of the body force is equivalent to a gravitatior
force. The simulation evolves in time until a steady-state hydrostatic pressure distribution
attained, and the resulting distribution is compared to the predicted theoretical distributic

The two problems differ in the orientation of the force vector. In the first, a force per uni
mass of fixed magnitudgis added in the, direction by modifying the evolution equation
for Us:

duj = -~ 2P)
(p) 9x%2

dt— ... +gdt. (56)

The direction of the force vector is vertical and always points towards the horizontal lin
passing through the center of the domain= 0. This divides the domain into two sym-
metrical halves, with the hydrostatic pressure distribution being homogenewyudrirthe
second test case, the force vector retains the same magnitude, but it is set to always p
radially towards the center of the domain (the equatiotfpis also modified in this case).
The resulting pressure distribution is axisymmetric.

In both cases the hydrostatic pressure distributions are nonlinear since the fluid is co
pressible. At steady state the mean momentum equatifar the horizontal body force
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problem is

1 d(P)

(p) dxo

-0 (57)

Together with the equation of state, Eq. (37), the solution to this ODE is
(v =1 gl V7Y
v P*/p

with p* and P* the density and pressurexat= 0 (these are found given the total mass of
fluid in the domain). The solution for the axisymmetric case is identical, excepxtlisit
replaced by the radial distance

Figure 17 compares the particle code hydrostatic pressure distributions for the two case
the theoretical distributions for the choige- 5.0. In both cases the agreement is excellent.
To perform each simulation, 128,000 particles were uniformly distributed with zero velocit
in the unit square domain. The total mass of the particles was chosen to be 1. Usin
normalized smoothing length q% the simulation was then evolved in time with a time
step of 0.01 until a stationary pressure distribution was reached afTtis&0.0. Time
averaging was subsequently done on the pressure field TUgtiR0.0. The number of
Fourier modes used to approximate each 1D kernel was chosen to be four, and eight mc
were used to approximate the kernel derivative. Throughout the simulation, the turbuler
model was kept on as a means to speed convergence and keep random fluctuations s
since it explicitly adds dissipation through the drift terms. Apart from this contribution

(p(X)) = p*|1— for x| < L/2, (58)

5.0 e e e

5 I Theoretical distribution: ]

Y(y-1)
(y-1)In ]

1-
g YP/hp

a0 PO=p
a Axisymmetric
Body Force

1-Dimensional
Body Force

1.0 |

05 F

T R R R R
0.1 0.2 0.3 0.4 0.5

oo b
-0.5 -0.4 -0.3 -0.2 -0.1 0.0

Radial Distance, r

FIG. 17. Hydrostatic pressure distributions for the 1D and axisymmetricpody force test cases as predic

from a simulation using 128,000 particles and normalized smoothing Ieﬁgthshz = 1—16
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the method has very little dissipation and, therefore, would require much longer to reacl
stationary state.

7.3. Unsteady Compressible Flow Problem

A third sample flow problem which has been studied highlights some of the effects
pressure on the flow evolution. This flow has an initial condition consisting of a centre
square region of isotropic turbulent fluid moving with a constant horizontal mean velocit
Uy, which is surrounded by ambient fluid. The density is initially constant and equal to
everywhere. Although this is a less physical problem than the 2D wake, it is neverthele
interesting: the flow is fully unsteady and inhomogeneous, it contains compression a
expansion waves, and it features a pair of decaying eddies. All of these phenomena
exhibited in the simulation results shown in Fig. 18.

For this simulation, the size of the central moving region was sét Iy %, and the
domain was chosen to be the unit square. The valukafras set to 1.0, and the turbulence
intensity in the moving fluid was set at 10% the speed of sound. The smoothing I_Ieﬁtngth
the simulation was made 1/16, and the number of partiless chosen to be 512,000. The
latter was made quite large so as to keep statistical fluctuations and bias small; the num
of particles contributing to each kernel estimate is roughly 8000. Four Fourier modes we
used to approximate each 1D kernel, while eight modes were used for the kernel derivati
Using a time-step of 0.005, the solution through 2.5 was obtained in slightly ové h on
an IBM RS/6000 Model 590. This is quite reasonable given the magnitude of the simulatic

The top row of plots shows the evolution of pressure, with solid lines indicating compre:
sion and dashed lines indicating expansiont At0.02, the moving fluid is just beginning
to form expansion and compression waves to the left and right of center, respectively. T
compression wave shapes itself into a well-defined arc as it propagates through the dom

t=0.02

t=0.0

FIG. 18. Evolution of pressure (top) and vorticity (bottom) for the unsteady compressible flow problem
Five hundred twelve thousand particles were used in the simulation, with normalized smoothing lengths eq
to L.

16
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whereas the expansion wave fills most of the left half of the domain. Periodic bounda
conditions are used in both coordinate directions, so that at later times these waves c
into contact again and interact.

The bottom set of plots show vorticity as computed from the mean velocity fielc
Solid/dashed lines show positive/negative vorticity, respectively. A pair of eddies form
in the wake of the moving central region as fluid from above and below rushes in to fill tF
low pressure area. At= 0.5 this behavior is evident. The eddies continue to slowly drift
to the right before eventually decaying, as the final bottom two contour plots show.

8. VARIATIONS/EXTENSIONS TO ALGORITHM

8.1. Fourier—Taylor Variation

The algorithm described in Section 3 was formulated by expanding each 1D kernel
a Fourier series. A variation of this approach is now described in which only one kern
is expanded. This variation, referred to by the author as “Fourier—Taylor,” was alreas
mentioned in reference to Fig. 9 of Section 5.

As in Section 3, the approach is best explained by using the example of calculating me
densities in a subregioR. Expanding the kernel ir;, for example, gives

M (i) *(N)
i R 2rp(X; — X o
PO )y = > m® Zalpcos{ (161 L >} K (3" —x3™. hy),

x*MeS p=0

(59)
which becomes (after manipulation)

M
DO = 3, [ ( S mOdR (g0 ", hz>)
p=0

xxMeS

+S‘p< Y mOsiR (" —xz(“),hz))]- (60)

x*MeS

For each modep, the quantities inside the large parentheses involve computing sets
cosine- and sine-weighted kernel estimates for all particiegh x*1) ¢ R. Computation-
ally this is equivalent to calculating a set of 1D kernel estimates and, thu§(thge Taylor-
series algorithm described in [10] can be used to obtain them. Repeatedly using the Tay
series algorithm for each of tHd modes results i (N M) computational work overall.

Inthis variation the definitions of the regioRsandSare slightly modified (the rectangular
domainD is assumed to be the same). With the Fourier expansion dogetime regionR
is a vertical strip extending the full height of the domain and having widthL ikewise,
Sis a similar vertical strip, but of widtht?, + w;. Both are centered horizontally about
X1 = xR,

The Fourier-Taylor variation has some unique advantages over the Fourier—Foul
method, one being that the work per particle in 2D scales onkp@d) as opposed to
O(M?). This is evident in Fig. 9, which shows that the increase in work for the Fourier-
Fourier algorithm as a result of doubling the number of modes is about twice the i
crease for the Fourier-Taylor algorithm. For valuedvbfused in actual 2D simulations
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though, the Fourier—Fourier algorithm is currently more cost-effective due to less ove
head.

A more important advantage of the Fourier—Taylor variation involves computation ¢
gradients. In SPH gradients are calculated by direct differentiation of the kernel, for examp

i<'0(x*(i))>N,h — Z m™ K (XI(” _ XI(H)’ hl) 8ixzr< (X;(i) _ X;(n), hz). (61)

axz x*M S

In the Fourier—Fourier implementation, convergence of relative error with respddt to
will therefore be slowest for gradients. With the Fourier—Taylor algorithm this reductior
in scaling is ideally eliminated if the Fourier expansion is done on the kewwidbeing
differentiated. This behavior is confirmed in Fig. 19 which plots results of a numerical te:
studying convergence of 2D relative error for the quantity/dx,) using both Fourier—
Fourier and Fourier—Taylor implementations. To make the difference in convergence ra
more distinguishable, the error in both curves is scaletVBy The curve for the Fourier—
Fourier implementation is therefore nearly horizontal as expected, while the curve for tl
Fourier—Taylor implementation continues to decrease Wththe measured slope being
about—0.8.

The numerical test, similar to the one performed for Fig. 5, was done using a smoot
ing lengthh = % and 262,144 particles deterministically positioned in the unit square
domain according to a predefined density field. Mean density gradient estimates basec
K’ (z, h, €, M)/ax were calculated using both the Fourier—Fourier and Fourier—Taylo
algorithms, and these were compared to the values obtained éug‘.i()g h)/ax to obtain
the relative errors plotted in the figure. The number of mddesas varied between 4 and
64, while the period was kept fixed &t= 3h.

10° —

Fourier-Fou rier\ww%

Fourier-Taylor

Measured Slope~-0.81

/

Period /=3h
M=4...64

Scaled Error=M® * max Kp/aX, ) pu-(0p/%ohn |

10-3 N L PR S SR | L L MR R I
10° 10' 10°

Number of Modes, M

FIG. 19. Relative error in(dp/dx,) for a 2D static test case. Scalings shown for both Fourier—Fourier and
Fourier—Taylor implementations.
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Figure 19 also shows that for valuesMfused in simulationsNl < 10, typically), the
relative error for the gradient is nearly an order of magnitude less using the Fourier—Tay
implementation as compared to the Fourier—Fourier implementation. In problems whe
relative error must be kept small, the Fourier—Taylor approach is thus ideal.

8.2. Extension to 3D

Extension of the algorithm to 3D is straightforward, with two possible choices. Stil
assuming a tensor-product kernel, each of the three 1D kernels can be expanded in a Fou
series to give at® (N M3) method. Asin 2DM need only be finite, provided that the periods
in each direction scale with the smoothing lengths. The other choice is to expand two
the three kernels and make use of €deN) Taylor-series algorithm. The overall work then
scales a®)(N M?). At present these approaches have been not yet implemented, but
difficulties are foreseen.

8.3. Extension to Isotropic Kernels

As presented in Section 3, ti¥ N) algorithm is applicable to tensor-product kernels. For
the combined PDF/SPH calculations presented in this paper, this requirement is comple
acceptable. In other applications such as astrophysical simulations, such a requirement
not be satisfactory. In fact, virtually all SPH simulations use kernels which are isotropic-
they are solely a function of the Euclidean distance between particles. This section expla
an approach which extends ti&N) algorithm to include isotropic kernels.

The key to this approach is determining a proper set of basis functions which is cor
patible with the separation property, Eq. (23). An isotropic kernel of the #0Km) can be
expanded in powers ofusing, for example, polynomial sets such as Legendre or Chebyshe
polynomials. But the definition of the Euclidean distande such that only even powers
of r are amenable to separation. This becomes clear through a simple example. Given
the distance in 2D between particieandnisri , = [(Xi — Xn)? + (i — Yn)2]¥/2, consider
calculating the pair of quantities

§¥= Zrl, §9 = Zr.n (62)

fori = 1-.-N. The former must be computed using@aN?) direct summation approach,
whereas the latter can be expanded and separated into

N N N
SP =N +YD) =26 D X =20 > Yo+ D Xa¥n (63)
n=1 n=1 n=1

and can, therefore, be obtained@{N) time. This is true for all even powers of Con-
sequently, if the isotropic kernel is expanded in a finite polynomial seriesénpowers
of r,

M
K, h)y=> apr, (64)
=0
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then computation of kernel estimates can be don@(N) time. Such expansions readily
exist for symmetric kernels such as Eq. (17).

Implementation of this approach is identical to the Fourier-series approach. The kerr
expansion is chosen to be valid over a finite interval of lerigthO(h), and kernel esti-
mates are sequentially computed in rectangular (or possibly even hexagonal) sublRegion
surrounded by corresponding support regiSnRelative error between the approximated
kernel estimates and the exact kernel estimates will decrease as the number ofl tarms
the expansion increases, and the rate of convergence will depend on the smoothness o
kernel. The computational work increases quickly, howevelk] & made bigger, since the
number of terms in the polynomial expansiorr &f grows exponentially witfp.

8.4. Parallel Implementation

The Fourier-series algorithm is well suited to implementation on scalable parallel con
puting architectures using the approach of mesh partitioning [28], also known as dom:
decomposition. In this approach the flow domain is divided into multiple subdomains, ea
of which is assigned to a single processor or node. Each node subsequently performs w
on only its subset of computational cells and the particles in those cells. In this way bo
the particle and grid work is divided among the nodes.

To illustrate this in the current context, consider again the example given at the end
Section 3 which lists the sequence of computational steps that are performed to obt
the mean densities i@ (N) time. Assume that the domain has been subdivided into loca
groups of one or more computational cells and that each group is assigned to one nc
The first step, Eq. (28), involves computing sums within computational cells. Since th
only involves data local to each cell, each node can perform this work without having |
communicate with other nodes. The second step, Eq. (29), is less intensive computation
than the first, but it does require communication between nodes. However, the amount
communicated data is small since it only consists of cell quantities. The third and fin
step again involves only local data and can, therefore, be performed independently by e
node. Thus, computation of mean fields using this parallel implementation of the algorith
is expected to be quite efficient overall.

Additional communication would be required between time steps as the particles crc
node boundaries, and this is common to all parallel implementations based on mesh pe
tioning. Although this communication is expected to dominate other communication, it ce
be significantly reduced by aligning the node boundaries with the mean-flow streamline

9. CONCLUSIONS

This paper has presented a PDF-based Monte Carlo particle method for simulating tv
dimensional compressible turbulent flows. While most PDF methods are implemented us
a particle-mesh approach, the particle method described here is unique in that it incorpore
the kernel estimation techniques of SPH to obtain a grid-free implementation. The me
benefit of using SPH is that it allows a general and robust treatment of the mean press
within the PDF framework; using kernel estimates, the pressure (and all other requir
quantities) is obtained directly from the particles.

This combination of SPH with the PDF method has also introduced computational chz
lenges. These have been successfully addressed, however, with the development o
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efficient algorithm for computing two-dimensional SPH kernel estimates. The algoritht
described in this paper is based on Fourier-series expansions of the SPH kernel, and f
simulation withN particles its computational work scales purely)8\). Consequently,
simulations for a wide variety of flows can be performed in reasonable time. The algorith
is also shown to be easily extendible to three dimensions and applicable to isotropic kern
Furthermore, its implementation on scalable parallel computing architectures is shown
be straightforward and is expected to be efficient.

Two types of numerical errors introduced by the finite series expansion have been p
sented and studied. Relative error, a measure of how well kernel estimates obtained u:
the Fourier-series algorithm compare to the original SPH estimates, was shown to scals
(Mh/£)~* for the kernel used in this study. Spatial error, the deterministic error caused |
using a finite smoothing length, was shown to converge for the new algorithm fist, all
provided¢ = O(h). In both cases, the errors scale as expected and can be kept negligil
small using modest computing requirements.

The particle method has been used to simulate a wide variety of 2D flows, including
stationary self-similar plane wake, hydrostatic flows under the influence of body force
and an unsteady flow featuring compression/expansion waves and a pair of decaying
tices. The range in scope of these problems demonstrates the robustness of the met
Furthermore, the plane wake problem shows that the method can be used to accura
simulate a flow of practical importance. In the wake simulation, the turbulent frequenc
varies with downstream position and is computed from the particles. Beginning from ¢
arbitrary inlet condition, the mean velocity and Reynolds stresses attain self-similar profil
which compare favorably with experimental data.
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