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This paper describes recent progress made in the development and implementation
of a two-dimensional Monte Carlo/PDF/SPH particle method. The approach, which
is applicable to compressible turbulent flows, incorporates elements of smoothed
particle hydrodynamics to extract mean quantities from the particles, including the
mean pressure gradient. A new and efficient algorithm based on Fourier-series ex-
pansions of the SPH kernel is used to compute these means; for a simulation withN
particles the computational work scales purely asO(N). A thorough study of numer-
ical errors introduced by the finite series expansion is also performed, and results are
presented which show that these errors scale as expected and can be made negligibly
small using modest computing requirements. The particle method has been used to
simulate a variety of 2D flows, including a stationary turbulent plane wake, flows
under the influence of simple body forces, and an unsteady flow featuring compres-
sion/expansion waves and a pair of decaying vortices. The plane wake calculation
includes comparisons with self-similar experimental data and good agreement is
obtained for the mean velocity and Reynolds stress profiles.c© 1998 Academic Press

Key Words:PDF methods; Monte Carlo methods; smoothed particle hydrodynam-
ics; turbulent flow; compressible flow.

1. INTRODUCTION

The probability density function (PDF) approach has become a useful computational
tool for predicting the properties of turbulent reacting flows [1]. For this class of flows the
PDF method has unique advantages over traditional moment-closure methods. In particular,
modeling of turbulent transport is unnecessary, and finite-rate nonlinear chemistry can be
treated both exactly and naturally [2, 3].

The majority of work using PDF methods has focused on incompressible flows, although
the method is known to be applicable to compressible flows as well [4, 5] (“compress-
ible” implying that variations in pressure induce corresponding variations in density). One
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possible reason for this is the lack of a general and robust treatment of pressure in the PDF
framework. While numerous approaches have been successfully used [6–9], they are often
limited in scope or introduce additional complexities into the problem.

Progress has recently been made in addressing this issue with the development and
testing of a new PDF formulation applicable to quasi-1D compressible turbulent flows
[10]. In this approach the treatment of pressure is quite general, and is based on kernel
estimation techniques derived from smoothed particle hydrodynamics (SPH). The current
work extends this new approach to 2D and 3D flows.

The decision to use SPH within the PDF formulation is motivated by three reasons.
The first is compatibility of the two methods. The favored approach for implementing
PDF methods is via Monte Carlo particle-mesh simulation. Monte Carlo simulation is
used primarily because it is an efficient solution method for problems involving large
dimensionality. In a Monte Carlo/PDF flow simulation, the fluid is represented using a
large sample of stochastic particles which mimic the physical behavior of fluid particles,
and properties for these particles are advanced in time according to specified evolution
equations. Simulations using SPH are performed using the same approach [11] (although
without a mesh), and thus the two methods are similar in their implementation.

A second reason for using SPH is that it allows the pressure to be obtained directly from
the particles—apart from an equation of state, no additional assumptions are needed. In
many applications of PDF methods, the approach used to obtain the pressure has been to
couple the Monte Carlo/PDF code to a finite-volume solver which returns the mean pressure
field [6, 12–14]. Using SPH this external dependence is removed to give a completely self-
contained Monte Carlo/PDF code.

A final reason for using SPH is that it is a grid-free approach. All required quantities,
including gradients, are calculated without reference to a fixed spatial grid. Complicated flow
patterns are therefore handled easily and naturally by the method. The 2D results presented
in this paper are the first ever obtained using a grid-free Monte Carlo/PDF method.

The main challenge to using SPH within the Monte Carlo/PDF framework has been to
reduce its computational cost. SPH is a locallyN-body method, meaning that each of the
N particles in a given simulation interacts directly with the subset of particles in its locally
defined neighborhood. In all known applications of SPH, the size of this neighborhood
(termed thesmoothing length) is purposely chosen so that the number of neighbors for each
particle remains relatively constant, typically on the order of a few dozen or less. Given
this constraint, it is then easy to code an algorithm whose computational work scales like
O(N).

In the Monte Carlo/PDF framework, however, this constraint is unacceptable due to the
stochastic nature of the problem. Since statistical error in the SPH kernel estimates depends
directly on the number of particles̄N which contribute to the estimates, convergence of the
method requires that̄N approach infinityindependent of the smoothing length. The trivial
implementation of SPH in this situation leads to anO(NN̄) algorithm, which for largeN̄
(hence, largeN) is clearly inefficient. The challenge therefore is to seek and develop an
algorithm which implements SPH in this context, but whose computational work scales
purely asO(N) (independent ofN̄). The previous work [10] described such an algorithm
for 1D problems, but it was not readily extendible to higher dimensions. A fewO(N log N)

tree-based algorithms that work in higher dimensions exist [15, 16], but these typically
have additional overhead associated with them for maintaining and updating the tree data
structure. The new algorithm described in this paper overcomes all these limitations in that
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it scales purely asO(N), has relatively low overhead, and is easily implemented in any
number of dimensions.

In summary so far, this paper makes three significant contributions to this field of research.
First, it extends the coupled PDF/SPH approach with its general treatment of mean pressure
to 2D flows. Second, it presents the first 2D results ever obtained using a grid-free Monte
Carlo/PDF method. And third, it presents a new algorithm which allows multidimensional
SPH kernel estimates to be accurately obtained inO(N) time independent of the smoothing
length.

The paper begins with a brief section presenting relevant background information on PDF
methods and SPH. The 2D particle evolution equations are also given. In Sections 3 through
5, the paper moves on to present the new 2D algorithm, to analyze numerical errors that it
introduces, and to compare its computational cost relative to other methods. Following a
review of the numerical implementation of the Monte Carlo/PDF method, Section 7 presents
a number of sample 2D results generated using the new method. The paper concludes after
a discussion in Section 8 of some variations and extensions to the algorithm.

2. COMBINED PDF/SPH METHOD

A unique feature of the particle method described in this paper is its combination of
SPH with a PDF-based Monte Carlo method. Until recently the two techniques have not
been used together, quite possibly solely because of computational limitations. The purpose
of this section is to provide a brief description of each technique and show how the two
methods complement each other.

2.1. PDF Method

In simulations of compressible turbulent flows without combustion, the relevant pdf is
the Lagrangianmass density function(mdf) of velocity and position, denoted byF(V, x; t)
[2]. Two important properties ofF are∫

F(V, x; t) dV = 〈ρ(x, t)〉 (1)

and ∫
Q(V, x, t)F(V, x; t) dV = 〈ρQ〉 = 〈ρ〉Q̃, (2)

where〈ρ〉 is the mean fluid density,Q is a random variable (itself a function of velocity,
position, and time), and̃Q is by definition the Favre average ofQ. Both integrals are over
the velocity sample space.

Using the Monte Carlo approach,F is represented by an ensemble ofN stochastic particles
which are continuously distributed in the domain and which model the behavior of fluid
particles. Each particle has properties of velocityU∗(n) and positionx∗(n) (asterisks are used
to indicate these properties are modeled), and from them the discrete Lagrangian mdf is
defined to be

FN(V, x; t) = 1m
N∑

n=1

δ
(
V − U∗(n)

)
δ
(
x − x∗(n)

)
, (3)
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where1m is the mass of each particle (1m =M/N for simulation of a fluid of constant
massM). The relationship betweenFN andF is [2]

〈FN(V, x; t)〉 = F(V, x; t), all N ≥ 1. (4)

Some insight into this relationship can be gained by considering the density. Temporarily
replacingF with FN in the integral of Eq. (1) gives, after simplifying,

ρN(x, t) = 1m
N∑

n=1

δ
(
x − x∗(n)

)
, (5)

usually referred to as thefine-graineddensity. Equation (4) subsequently implies

〈ρ(x, t)〉 = 〈ρN(x, t)〉. (6)

In a numerical implementation, the right side of this expression can be estimated through
ensemble averages.

In the 2D implementation the positionx∗ of a particle consists of two coordinates{x∗
1, x∗

2}
and the velocityU∗ has three components{U ∗

1 ,U ∗
2 , u∗

3} (where a lower case velocity denotes
a fluctuation with respect to the Favre average). These properties evolve according to the
modeled system of stochastic equations:

dx∗
i = U ∗

i dt, i = 1, 2 (7)

dU∗
i = − 1

〈ρ〉
∂〈P〉
∂xi

dt − βω(U ∗
i −Ũ i ) dt + (C0ωk̃)1/2 dWi (t), i = 1, 2 (8)

du∗
3 = −βωu∗

3 dt + (C0ωk̃)1/2 dW3(t). (9)

The velocity evolution equations correspond to the simplified Langevin model, a stochastic
model for inhomogeneous, incompressible turbulence [3]. Appearing in the equations are
various coefficients (determined from the particles) and parameters. Coefficients include
the mean pressure〈P〉, the Eulerian Favre-averaged velocitiesŨ i , and the turbulent kinetic
energyk̃. These are evaluated at the particle position(x∗

1, x∗
2). Depending on the type of

problem being solved, the turbulent frequencyω (defined as〈ε〉/k̃, where〈ε〉 is the mean
dissipation) may also be a coefficient. Parameters specified by the user include a universal
constantC0 (the valueC0 = 2.1 is used here), and a drift constantβ (defined to be12 + 3

4C0).
The final input isW(t), an isotropic vector Wiener process that is simulated for each particle
at each time step. Details on the simplified Langevin model can be found in Refs. [3, 17,
18].

Taken together the modeled particle evolution equations imply an equivalent modeled
transport equation for the Lagrangian mdfF

∗ [2], the derivation of which yields

∂F
∗

∂t
+

2∑
j =1

∂

∂xj
[Vj F

∗] =
2∑

j =1

∂

∂Vj

[{
1

〈ρ〉
∂〈P〉
∂xj

+ βω
(
Vj −Ũ j

)}
F

∗
]

+ ∂

∂V3
[βωV3F

∗] + C0ωk̃

2

∂2F
∗

∂Vj ∂Vj
. (10)



            

414 WALTER C. WELTON

This equation may subsequently be used to obtain all evolution equations for moments
of velocity (such as Reynolds stresses) corresponding to the original system of particle
evolution equations. Note that this equation is the two-dimensional extension of the one
given in [10], but without the area-effect source terms.

2.2. SPH Method

Solution of the particle evolution equations (7)–(9) requires evaluation of various co-
efficients, including〈ρ〉, ∇〈P〉, Ũ i , andk̃, and smoothed particle hydrodynamics offers a
means to accomplish this. Using the grid-free kernel estimation techniques of SPH, these
coefficients are evaluated directly from the particles.

For any fieldQ(r) (random or deterministic), a “smoothed” kernel estimate to〈Q〉 at the
pointx is given by the integral relation

〈Q(x)〉h =
∫ ∞

−∞
Q(r)K (x − r , h) dr , (11)

where K (r , h) is a user-specified interpolating kernel, and thesmoothing length his a
measure of the kernel width. The subscripth is added to the angle brackets to distinguish
the quantity from the true expectation and to indicate that it is obtained by using a smoothing
length of magnitudeh.

Assuming the fieldQ is represented by a distribution ofN particles with positions{x∗(n)}
and properties{Q(n)}, the integral in Eq. (11) can be estimated using the discrete form [11]

〈Q(x)〉N,h = 1m
N∑

n=1

Q(n)

〈ρ〉(n)
K

(
x − x∗(n), h

)
, (12)

with 1m the mass of each particle. Note that smaller values ofh give more spatially accurate
estimates to〈Q(x)〉, but result in fewer particles giving significant contributions, and hence,
more statistical error and bias. (As a side note, for the case of mean density, Eq. (12) gives

〈ρ(x)〉N,h = 1m
N∑

n=1

K
(
x − x∗(n), h

)
, (13)

which is precisely the expression obtained ifQ(r) is replaced by the fine-grained density
ρN(r) in Eq. (11).

The smoothing kernelK (r , h) must satisfy the two properties∫ ∞

−∞
K (r , h)dr = 1 (14)

and

lim
h→0

K (r , h) = δ(r), (15)

so that limh→0〈Q(x)〉h = 〈Q(x)〉 [19]. For the purpose of this study, the 2D kernel is also
assumed to be a tensor-product kernel; it can be written in the form

K (x, h) = K̂ (x1, h1) K̂ (x2, h2), (16)
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with h1 andh2 the smoothing lengths in each coordinate direction. Furthermore, the 1D
kernelK̂ has compact support in thatK̂ (r, h) = 0 for |r | > h. This latter property is required
for the 2D algorithm. For future reference, the functional form ofK̂ used here is [20]

K̂ (r, h) =
{ 5

4h (1 + 3|r |/h)(1 − |r |/h)3 for |r | ≤ h
0 for |r | > h.

(17)

Note thatK̂ is symmetric aboutr = 0, and piecewise-quartic with a continuous second
derivative.

3. O(N) FOURIER-SERIES ALGORITHM

This section describes the newO(N) algorithm for computing multidimensional SPH
kernel estimates. The availability of such an algorithm is crucial to the success of the
combined PDF/SPH approach. As stated previously, the average number of particlesN̄
contributing to each kernel estimate must be made large in order to reduce the statistical
error introduced by the Monte Carlo method. In the 2D simulations performed here, values
for N̄ on the order of a thousand are necessary to keep statistical fluctuations in mean flow
quantities reasonably small. Clearly then, for a simulation withN particles, whereN is
large, anO(NN̄) direct sum implementation for computing kernel estimates is prohibitive;
the only feasible way to compute these quantities is via anO(N) algorithm.

The new algorithm is based on series expansions of the kernel. For the purpose of describ-
ing the algorithm, consider the example of calculating mean densities via kernel estimates
at all particle locations in a two-dimensional regionR,

〈
ρ
(
x∗(i )

)〉
N,h =

N∑
n=1

m(n)K̂
(
x∗(i )

1 −x∗(n)
1 , h1

)
K̂

(
x∗(i )

2 −x∗(n)
2 , h2

) {
i : x∗(i ) ∈ R

}
, (18)

whereh is written for{h1, h2}, and the tensor-product property of the 2D kernel, Eq. (16),
has been assumed. For generality each particle is allowed to have a unique massm(n). The
regionR should be thought of as a subregion of the computational domainD; it is hereafter
assumed to be rectangular with dimensionsw1 andw2, centered atxR, and aligned with the
coordinate axes so that

R =
[
xR

1 − w1

2
, xR

1 + w1

2

]
×

[
xR

2 − w2

2
, xR

2 + w2

2

]
(19)

as in Fig. 1.
Because the kernelŝK are compact, the mean density estimate at each positionx∗(i )

consists of contributions from a local subset of the particles. More specifically, contributions
to any kernel estimate inR will come only from particles in regionSof Fig. 1,

S =
[
xR

1 − w1

2
− h1, xR

1 + w1

2
+ h1

]
×

[
xR

2 − w2

2
− h2, xR

2 + w2

2
+ h2

]
, (20)

so that the summation in Eq. (18) can be changed to give〈
ρ
(
x∗(i )

)〉
N,h =

∑
x∗(n)∈S

m(n)K̂
(
x∗(i )

1 −x∗(n)
1 , h1

)
K̂

(
x∗(i )

2 −x∗(n)
2 , h2

) {
i : x∗(i ) ∈ R

}
. (21)
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FIG. 1. Computational domainD, including a region of interestR and the corresponding region of support
S for any kernel estimate inR.

With the summation restricted to particles inS, the range of arguments passed to the
1D kernels is now clearly bounded. For example, the maximum value of|x∗(i )

1 − x∗(n)
1 | is

h1 + w1 which occurs ifx∗(i )
1 is on the left or right boundary ofRandx∗(n)

1 is on the opposite
boundary ofS. Given this bound, the kernel may be replaced by a series expansion valid in
the intervalr ∈ [−h1 − w1, h1 + w1], for example,

K̂ (r, h1) =
∞∑

p=0

âpφp(r ), (22)

whereφ(r ) = {φp(r )}∞p=0 is any set of basis functions that is orthogonal over the interval
[−h1−w1, h1+w1]. Existence of theO(N) algorithm subsequently depends on the choice
of φ(r ). In particular,φ(r ) must have the separation property

∑
n

φp(r − rn) = F

(
φ(r ),

∑
n

φ(rn)

)
, eachp, (23)

as will become clear. Examples of function sets satisfying this property are the trigonometric
basis functions, and polynomial sets such as Legendre or Chebyshev polynomials.

For the remainder of the paperφ(r ) is taken to be the set of trigonometric basis functions.

With this choice, Eq. (22) gives the Fourier-series expansion forK̂
P
(r, h1, `1), the periodic

extension ofK̂ (r, h1) with period `1 = 2(h1 + w1). Because the kernels are symmetric
aboutr = 0, the expansion consists only of cosine terms. Furthermore, the periodicity of

K̂
P

allows`1 to be reduced to 2h1 + w1 without consequence, as sketched in Fig. 2. Using

the same process,̂K (r, h2) is replaced withK̂
P
(r, h2, `2), wherè 2 = 2h2+w2. With these

substitutions, the resulting Fourier-series expansion of Eq. (21) is

〈
ρ
(
x∗(i )

)〉
N,h =

∑
x∗(n)∈S

m(n)

 ∞∑
p=0

â1p cos

{
2πp

(
x∗(i )

1 − x∗(n)
1

)
`1

}

×
 ∞∑

q=0

â2q cos

{
2πq

(
x∗(i )

2 − x∗(n)
2

)
`2

} , (24)
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FIG. 2. Periodic extension for the 1D kernelK̂ (r, h1), with period`1 = w1 + 2h1.

where the Fourier coefficients{â1p, â2q} are known functions of the periods{`1, `2} and the
smoothing lengths{h1, h2}.

This equation can be manipulated. Exchanging the order of summation, expanding the
cosine terms (applying the separation property) and considering a finite Fourier expansion,
yields

〈
ρ
(
x∗(i )

)〉
N,h,M =

M1∑
p=0

M2∑
q=0

â1p â2q

[
ci

pci
q

( ∑
x∗(n)∈S

m(n)cn
pcn

q

)
+ ci

psi
q

( ∑
x∗(n)∈S

m(n)cn
psn

q

)

+ si
pci

q

( ∑
x∗(n)∈S

m(n)sn
pcn

q

)
+ si

psi
q

( ∑
x∗(n)∈S

m(n)sn
psn

q

)]
, (25)

in which the following shorthand notation has been used:

ci
p = cos

(
2πpx∗(i )

1

`1

)
, ci

q = cos

(
2πqx∗(i )

2

`2

)
,

si
p = sin

(
2πpx∗(i )

1

`1

)
, si

q = sin

(
2πqx∗(i )

2

`2

)
.

(26)

In addition,〈ρ(x∗(i ))〉N,h has been changed to〈ρ(x∗(i ))〉N,h,M to indicate a finite expansion

up through modesM = {M1, M2}. Because the kernelŝK
P

are smooth, it is clear that

lim
M1→∞
M2→∞

〈ρ(x)〉N,h,M = 〈ρ(x)〉N,h, all x ∈ R. (27)

The quantities in parentheses in Eq. (25) can be calculated independently for each mode
pair (p, q), so that the work required to compute〈ρ(x∗(i ))〉N,h,M for all i : x∗(i ) ∈ R scales
asO(N̂ M1M2), whereN̂ is the number of particles inS. By repeatedly applying Eq. (25)
to different subregions ofD, all mean densities may be obtained inO(N M1M2) work.
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FIG. 3. Domain decomposition for the sample case withh1 = h2 = h and`1 = `2 = 3h.

A concrete example which clarifies this is now presented. The example consists of a
rectangular domainD which is subdivided into a lattice of square cells of side lengthh,
whereh1 = h2 = h. Each subregionR is chosen to be one cell so thatw1 = w2 = h and
`1 = `2 = 3h, and each corresponding support regionS therefore consists of the 3× 3
group of cells centered aboutR, as shown in Fig. 3. TheN particles are assumed to be
binned according to this set of cells. For each mode pair (p, q), the following steps are
performed:

1. Calculate∑
x∗(n)∈R

m(n)cn
pcn

q,
∑

x∗(n)∈R

m(n)cn
psn

q ,
∑

x∗(n)∈R

m(n)sn
pcn

q,
∑

x∗(n)∈R

m(n)sn
psn

q , (28)

for each cellR.
2. Using the quantities from step 1, calculate∑

x∗(n)∈S

m(n)cn
pcn

q,
∑

x∗(n)∈S

m(n)cn
psn

q ,
∑

x∗(n)∈S

m(n)sn
pcn

q,
∑

x∗(n)∈S

m(n)sn
psn

q , (29)

corresponding to each regionR. This simply involves sums over cells.
3. Use Eq. (25) to add this mode’s contribution to each particle of each regionR.

Steps 1 and 3 both requireO(N) work, whereas the work for step 2,O(L/h)2, is negligible
since the number of cells is always much less than the number of particles. Thus, the
total work for all mode pairs up through (M1, M2) isO(N M1M2). AssumingM1 andM2

need only be finite and can be chosen independently of the other numerical parameters (an
assumption which will be validated in the next section), this gives a purelyO(N) algorithm.

The periods̀ 1 and`2 can be made arbitrarily close to 2h by makingw1 andw2 approach
zero. This simply corresponds to making the computational lattice finer. If the cell size
in the previous example is reduced toh/2 units per side, then each cellR will receive
contributions from particles in the 5×5 subset of cells centered aboutR, and the period can
be reduced to 5h/2. The primary benefit of having a smaller period is faster convergence
of 〈ρ(x)〉N,h,M to 〈ρ(x)〉N,h with respect to the number of modes.
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For practical applications, testing has shown that choosing the number of modes in each
direction to be on the order of four gives sufficient resolution. Calculation of gradients
requires somewhat higher resolution—on the order of eight modes. As will be shown in
Section 5, these requirements are quite modest and allow for efficient calculation of the 2D
kernel estimates.

4. ERROR ANALYSIS

As of this point the proper choice of periods` j and number of modesM j has not yet been
addressed. In this section, an error analysis is performed which yields specific requirements
for these parameters given the smoothing lengthsh j .

Two types of error will be studied: relative error and spatial error. The former is useful for
estimating how close the approximated kernel estimates〈ρ(x∗(i ))〉N,h,M come to the original
desired estimates〈ρ(x∗(i ))〉N,h, whereas the latter is studied to determine qualitative effects
of the algorithm on convergence of the method.

4.1. Relative Error

The finite Fourier representation of̂K in Eq. (25) corresponds to a modified 1D kernel
K̂

′
(r, h, `, M) given by

K̂
′
(r, h, `, M) =


M∑

p=0

âp(h, `) cos

(
2πpr

`

)
for |r | ≤ `/2

0 for |r | > `/2.

(30)

A relative errorER can then be defined as

ER ≡
∫ `/2

−`/2
|K̂ ′

(r, h, `, M) − K̂ (r, h)| dr, (31)

whereER depends onh, `, andM . This error is simply a measure of how well the modified
kernel represents the original kernel, and hence, how close〈ρ(x)〉N,h,M will be to 〈ρ(x)〉N,h.
The dependence ofER on the parametersh, `, andM takes the form

ER

(
M,

`

h

)
∼ C

(
Mh

`

)−q

, (32)

where the exponentq ≥ 1 is determined by the smoothness ofK̂ . In particular, ifK̂ has j
continuous derivatives over [−`/2, `/2], thenq is expected to bej + 2. Figure 4 plotsER

versusMh/` for the piecewise quartic kernel used in this study, Eq. (17). Since the kernel
has a continuous second derivative everywhere,q should be 4. This agrees with the plot
which clearly shows a(Mh/`)−4 scaling for largeMh/`. Note that calculation of gradients
would reduce this scaling to(Mh/`)−3, and hence, more modes are required to achieve the
same level of resolution.

Equation (32) yields a number of observations:

1. The nondimensional groupMh/` must be large forER to be small.
2. To maintain a given toleranceER, M must scale as̀/h.
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FIG. 4. Computed relative error for the piecewise quadratic kernel, Eq. (17).

3. With M constant,ER scales as(`/h)q.
4. If ` scales withh, thenER becomes independent of`/h.

The first of these relates to the ability ofK̂
′
to resolveK̂ . Since the length scale for̂K relative

to the period ish/`, modes up through at leastO(`/h) are needed for̂K to be accurately
resolved. Thus,ER decreases as the total number of modes becomes large relative to`/h.
The second and third observations are intuitive—making`/h smaller lowers minimum
mode resolution requirements and therefore decreases the relative error for a givenM . At
best` may scale asO(h) (provided` ≥ 2h), in which case the fourth observation applies.

It can be expected that relative errors in kernel estimates scale asER. In 1D, for example,

E〈Q〉 = max
x

|〈Q(x)〉N,h,M − 〈Q(x)〉N,h| ∼ αER

(
M,

`

h

)
, (33)

where the coefficientα depends on the quantity〈Q〉. This behavior is confirmed in Fig. 5
which shows mean density relative errors for a 1D static test for the two cases` = L and
` = 2.5h. To perform the test, 32,768 particles were deterministically positioned according
to a predefined density field and the mean density kernel estimates based onK̂ (r, h) and
K̂

′
(r, h, `, M) were then compared to determineE〈ρ〉 as in Eq. (33). The number of modes

M was varied between 2 and 256, and the normalized smoothing lengthh/L was varied
between1

4 and 1
128. Each plot shows the behavior ofE〈ρ〉 versus the relevant scaling param-

eter:Mh/` for the casè = L; M for the casè = 2.5h. In both plots the scaling behavior
is as expected. Note also the qualitative similarity between the case` = L and Fig. 4, which
supports Eq. (33). (The stair-stepping effect visible in the top plot arises due to coupling
between the predefined density field chosen for this test and the periodic kernel; it is not an
artifact of the Fourier-series algorithm.)
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FIG. 5. Mean density relative error,E〈ρ〉, for a 1D static test case usingN = 32,768 particles.

4.2. Spatial Error

The dependence of spatial error on the parametersh, `, andM is now discussed. For any
quantityQ this error is defined as

HQ = 〈Q〉h − 〈Q〉h=0, (34)

where〈Q〉h is given by Eq. (11). Convergence of the spatial error is guaranteed if the kernel
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satisfies properties (14) and (15). For example, the spatial error for symmetric kernels such
asK̂ scales asO(h̄2), whereh̄ is the normalized smoothing lengthh/L. Two important
questions to therefore ask are

1. Does the modified kernel̂K
′
satisfy these properties?

2. If so, what is the scaling ofHQ with h̄?

It is straightforward to show that̂K
′
satisfies the normalization property, Eq. (14), forall

choices ofh, `, andM , since only the modep = 0 contributes to the integral:∫ ∞

−∞
K̂

′
(r, h, `, M) dr =

∫ `/2

−`/2
â0(h, `) dr = `â0 = `

[
1

`

∫ `/2

−`/2
K̂ (r, h) dr

]
= 1. (35)

The second property requires thatK̂
′
approach a delta function ash approaches zero. In

contrast to the previous property, this isnot guaranteed for arbitrary choices of` and M .
An obvious example isM = 0 and` is a constant independent ofh. This function does not
even depend uponh, and hence, cannot satisfy property (15). It can be satisfied, however,
by requiring that either̀ scale ash, or M scale asL/h. The first possibility corresponds to
a simple delta sequence forK̂

′
ash approaches zero, and has the advantage of being valid

for anyM . The second possibility, although valid in theory, can be rejected from a practical
standpoint since it results in an inefficient algorithm ash becomes small. The requirement
` = O(h) is thus established which allowŝK

′
to satisfy the necessary properties of kernels

while also taking into account practical considerations.
Given that` =O(h), the kernelK̂

′
is valid for all choices ofM , and spatial error is

guaranteed to converge ash̄ approaches zero. As it appears in Eq. (30),K̂
′
is symmetric

and thus one would expectHQ to scale asO(h̄2). In the numerical implementation of
theO(N) algorithm, however, the actual kernel used is asymmetric due to phase shifting.
Figure 6 illustrates this for the case` = 3h andM = 2. The solid curves show the modified
kernel that would be used to compute kernel estimates at both the center and extreme left
of the one-dimensional regionR. The kernel used at the center ofR is symmetric, but the

FIG. 6. Kernel asymmetry for the casè= 3h, M = 2.
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off-center one (which is phase-shifted byh/2) is clearly not symmetric. Consequently,
if M is finite then the scaling ofHQ will change toO(h̄) in the limit as h̄ approaches
zero.

This behavior shows up well in Fig. 7, which presents scalings ofHQ versush̄ as deter-
mined from both 1D and 2D numerical tests. These tests involve deterministically position-
ing a large number of particles according to a known density field and then measuring errors
in the mean density kernel estimates relative to the analytic values. The actual number of
particles used varies for each value ofh̄ and is chosen so that the bias is small (less than
1%) relative to the measured spatial error. The top two plots refer to the 1D test, and the
bottom two are for the 2D test. On the left is the scaling that results if the original kernel
K̂ is used (corresponding to direct summation); in both 1D and 2D it isO(h̄2) as expected.
On the right are results using the new algorithm with` = 3h andM ranging from 2 to 16.
For largeM(M ≥ 8) the scaling remains close toO(h̄2) over the range of̄h considered.
For smallM , however, the qualitative change toO(h̄) scaling is evident. ForM = 2, the
change occurs at relatively large values ofh̄ (comparable to those which would be used in
actual simulations). ForM = 4, the change occurs at values ofh̄ more than one order of
magnitude smaller (for the 2D case the scaling is just beginning to “peel off” at the smallest
value ofh̄).

FIG. 7. Spatial error scalings in 1D and 2D using (a) pure SPH and (b) Fourier-series algorithm with` = 3h.
Dotted lines show reference slopes.
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Judging from the behavior of these results, theO(h̄2) scaling can be recovered for allh̄
by allowingM to increase appropriately as̄h decreases, with the precise form of the scaling
dependent on the kernelK̂ . To determine this scaling, the spatial error is written in the form

HQ = g(E〈Q〉)h̄ +O(h̄2), (36)

with g(0) = 0. For smallE〈Q〉, g will scale asE〈Q〉 to some positive power, and numerical
experiments have shown this power to be close to 1. Taking it to be identically one leads to
a required scalingM ∼ h̄−1/4. Note that this scaling need only be implemented in the limit
of smallh̄. For a large working range of̄h, the desiredO(h̄2) scaling will still be observed
given a reasonable value ofM (sayM = 4). In addition, the qualitative change in scaling
is further delayed by using smaller periods; the results in Fig. 7 are for` = 3h, whereas in
typical simulations̀ is about 2.25h.

4.3. Summary

Two different types of error have been studied in this section. Relative error, a measure
of how well kernel estimates obtained using the Fourier-series algorithm compare to the
original SPH estimates, was shown to scale as the nondimensional groupMh/` to the−4
power for the kernel used in this study. Spatial error, the deterministic error caused by using
a finite smoothing length, was shown to converge for the new algorithm for allM , provided
` = O(h). With M constant, the scaling is initiallyO(h̄2) and then changes toO(h̄) ash̄
approaches zero. This change in scaling, however, has minimal impact, since for reasonable
values ofM it occurs beyond the typical working range ofh̄.

5. COMPUTATIONAL COST COMPARISON

This section compares the computational cost of the new Fourier-series algorithm to
other algorithms used with SPH. The dependence of computational work on the number of
particles is presented for both one- and two-dimensional tests. Although the focus of the
paper is on 2D, the 1D results provide a meaningful baseline for comparison.

5.1. Computational Cost in 1D

The Fourier-series algorithm is easily implemented in one dimension, and offers much
improved performance compared to a direct summation algorithm. Figure 8 shows the
scaling of computational work in 1D for various methods. The test used to determine the
scaling simply involved calculating mean densities as per Eqs. (13) and (25) for a fixed
numberN of deterministically positioned particles. For cases withN small, the test was
performed multiple times to increase the timing resolution. The vertical scale is the CPU
time required per particle, measured in seconds. This is a useful performance indicator
since any method will scale at least asO(N). This quantity is plotted versus̄N, the average
number of particles contributing to each kernel estimate. (In D dimensionsN̄ = N(h/L)D.)

In Monte Carlo/PDF simulations of fluid flows,̄N is a key parameter controlling the level of
statistical error. For the direct summation algorithm, it is also the key parameter determining
the expense of the method.

As expected, the scaling of the CPU time per particle withN̄ is linear for the direct
summation algorithm, whereas the Fourier-series algorithm is independent ofN̄. CPU time
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FIG. 8. Comparison of computational cost for various 1D algorithms: (a) direct summation; (b) Taylor-series;
(c) Fourier-series withM = 4 andM = 8.

per particle does increase asM is made larger, as Fig. 8 shows. The intersection of the
Fourier-series and direct summation curves, although not explicitly shown on the plot, is
roughly atN̄ ≈ 1. even withM = 8. If a small amount of relative error is acceptable, then
the Fourier-series algorithm is clearly a superior choice over direct summation for SPH
kernel estimation.

Also shown on the plot is the scaling for the Taylor-series algorithm described in [10].
In 1D it is approximately 2–3 times more efficient than the Fourier-series algorithm, and it
also has zero relative error. It is therefore the method of choice for 1D problems. In higher
dimensions, however, its scaling is not as good(O(NN̄1/2

) in 2D) and its implementation
is also difficult.

5.2. Computational Cost in 2D

Figure 9 shows computational cost scalings for various two-dimensional algorithms.
The test used here is the same: measure the CPU time needed to calculate all 2D mean
density kernel estimates for a set ofN deterministically positioned particles. As in 1D,
the work per particle increases linearly with̄N for the direct summation algorithm and
remains constant for the Fourier-series algorithm. Two sets of curves are presented for the
Fourier-series algorithm, and they are labeled “Fourier–Fourier” and “Fourier–Taylor.” The
former corresponds to the algorithm described in Section 3 (in which both 1D kernels are
expanded in Fourier-series), whereas the latter is a modification to the algorithm that is
described in Section 8 (only one kernel is expanded). In this section focus is still on the
“Fourier–Fourier” implementation.

Compared to 1D, computational cost for the Fourier-series algorithm is more by a factor
of about five for the two cases shown, a consequence of the scaling changing fromO(N M)

to O(N M2). Relative to direct summation, however, the algorithm is still superior. The
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FIG. 9. Computational cost comparison of selected 2D algorithms: (a) direct summation; (b) Fourier–Fourier
with M = 4 andM = 8; (c) Fourier–Taylor withM = 4 andM = 8.

intersection of their respective curves is at aboutN̄ ≈ 5, whereas the typical operating
region forN̄ in Monte Carlo/PDF simulations begins atN̄ ≈ 100 [21]. The results presented
in Section 7 havēN on the order of 1000, corresponding to a computational savings of two
orders of magnitude over direct summation.

6. NUMERICAL IMPLEMENTATION

Numerical implementation of the combined PDF/SPH method is straightforward. At the
start of a simulation particles are distributed in the domain and their properties are set
according to a specified initial condition. This initial condition can be either deterministic
or random. In the latter case, requirements are imposed on statistical moments of quantities;
for example, the initial mean velocity field may be specified everywhere in the domain. The
initial particle properties are then random variables having these moments. With the initial
condition in place, the particle simulation is then advanced in time. At each time step this
involves computing mean coefficients from the current particle distribution via SPH kernel
estimates, enforcing boundary conditions, and integrating the stochastic particle evolution
equations forward in time.

6.1. Evaluation of Coefficients

Coefficients for each of theN particles are calculated using the Fourier-series algorithm
and include〈ρ〉, ∇〈P〉, Ũi , andk̃. (The special case ofω being a coefficient is described
in Section 7.) The mean densities are obtained using Eq. (13), and mean velocities and
turbulent kinetic energies are obtained using appropriate forms of Eq. (12). Calculation of
the mean pressure gradient is performed using a modified approach which derives from the
equation of state. For the isentropic flows considered in this paper, the mean pressure and
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density are related through ( 〈P〉
P0

)
=

( 〈ρ〉
ρ0

)γ

, (37)

whereγ is the ratio of specific heats, andP0 andρ0 are reference values. From this equation
of state, the pressure gradient is obtained using

∇〈P〉 = γ
〈P〉
〈ρ〉 ∇〈ρ〉. (38)

This form is used for two reasons. First, it has the advantage of having the density inside
the gradient operator [11] and is thus more accurate. Second, it is computationally efficient
within the context of the Fourier-series algorithm:∇〈ρ〉 can be obtained simultaneously
along with〈ρ〉 by simply replacing the Fourier coefficientsâp for the 1D kernelK̂ with
those for its derivative,̂bp = (2π/`)pâp.

6.2. Boundary Conditions

Two types of boundary conditions are presently implemented in the 2D particle method:
periodic and inflow/outflow. Unlike grid-based methods which apply boundary conditions
on grid points, the particle method enforces these conditions directly using particles. This
is consistent with the fully Lagrangian framework of the method.

Periodic boundary conditions are easy to implement and have been used extensively
during development and testing of the method. A particle which exits the domain along one
boundary simply reenters from the opposite side with the same properties. The kernel is
also extended periodically.

Inflow/outflow boundary conditions are more difficult to implement but make possible
the simulation of more realistic flow problems. The implementation used here is the 2D
extension of the one presented in [10]. Since the method is applicable to compressible
flows, a characteristic-based approach is used [22, 23]. The approach involves determining
values for incoming and outgoing characteristics at the inlet and outlet boundaries. Values
for characteristics exiting the domain are obtained from the interior particles using straight
kernel estimates, while values for those entering are determined from the applied physical
boundary conditions (such as a mean velocity profile at the inlet or an exit pressure at the
outlet). Actual values for the applied boundary conditions are then computed from these
two sets of characteristics using standard methods.

Rectangular buffer zones upstream of the inlet and downstream of the outlet are used to
enforce the boundary conditions. Within these zones, particles are distributed based upon
the calculated boundary values for density, velocity, and other variables (which depend on
the type of flow). The two main advantages of this approach are that kernel estimates for
all interior particles can be obtained using the same method (no special treatment must be
made for particles near the boundaries), and particles will flow naturally into and out of the
domain. Full details of the inflow/outflow implementation are available in Ref. [10].

6.3. Predictor/Corrector Scheme

The stochastic system of evolution equations is integrated forward in time using a weak
second-order accurate two-step scheme. At the beginning of a time step, all coefficients are
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computed from the current particle distribution, and the evolution equations are integrated
forward in time to yield predicted values for each particle property. Predicted values for the
coefficients are then obtained from the new particle properties and averaged with the initial
coefficients. Finally, the evolution equations are integrated forward in time as before, but this
time using the averaged coefficients to obtain corrected values for the particle properties.
Using this scheme with a fixed time-step1t , the temporal error in mean quantities will
scale asO(1t2) [10, 24].

7. SAMPLE 2D RESULTS

The combined PDF/SPH method has been used to obtain results for a variety of 2D
flow problems, and this section presents a sampling of these results. Examples include a
stationary turbulent plane wake, hydrostatic flows under the influence of body forces, and a
fully unsteady flow featuring compression/expansion waves and a pair of decaying vortices.
These examples serve to demonstrate the robustness of the method, as well as its feasibility
in terms of required computational resources.

7.1. 2D Plane Wake

The particle code has been used to simulate the spatial evolution of the two-dimensional
turbulent plane wake behind a circular cylinder. This is a problem which has been extensively
studied in the laboratory and for which much experimental data exist. Comparisons of the
particle code results are made to some of this data. The problem also provides a meaningful
test of the particle code’s ability to simulate a flow of practical importance.

7.1.1. Background

Figure 10 shows the physical layout of the problem. A cylinder is placed in a uniform
flow of speedUE so as to produce a developing turbulent wake downstream. The velocity
defectUD at the center of the wake gradually decreases with downstream distance, and
the width of the wake, shown asδ, grows as the turbulent fluid mixes and spreads into the
surrounding freestream flow. The precise definitions ofUD andδ are

UD(x1) ≡ UE − Ũ1(x1, 0), (39)

Ũ1(x1, δ) = UE − UD(x1)

2
. (40)

Both theoretical and experimental observations have shown that the 2D wake exhibits
asymptotic self-similarity in the limit asx1 → ∞. In this limit, transverse profiles of mean
velocity and Reynolds stresses are fully characterized by the parametersUE, UD, andδ

shown in Fig. 10. Given values for these parameters at a stationx1 sufficiently far downstream
from the cylinder, the mean streamwise velocity scales as

Ũ1(x1, x2) = UE − UD(x1) f (η), (41)

while the Reynolds stresses scale as

ũi u j (x1, x2) = U2
D(x1)gi j (η). (42)

Here, the similarity variableη is definedx2/δ.
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FIG. 10. Physical setup of 2D plane wake problem, showing the parametersUE,UD, andδ.

Wygnanskiet al. [25] found that the functionf (η) was universal; different wake gen-
erators gave self-similar mean velocity distributions which all yielded the same functional
form for f . In particular, an excellent fit to their experimental data was provided by the form

f (η) = exp(−0.637η2 − 0.056η4), (43)

which is plotted in Fig. 11. The Reynolds stresses were found to not be universal. For a
given wake generator, the evolution of̃ui u j did become self-similar, but different generators
led to different forms forgi j . Some insight into this behavior is gained through the mean
streamwise momentum equation. Assuming∂〈P〉/∂x1 is zero, it leads to the following
relationship betweenf andg12,

g12(η) = −Sη f, (44)

where

S = 1

2

d

dx1

(
UEδ

UD

)
(45)

is thespreading rate. The value ofS depends on the type of wake generator used; exper-
iments for a circular cylinder giveS = 0.082 [25]. The curve forg12 based on this value
of S and the functionf defined in Eq. (43) is also plotted in Fig. 11. The remaining three
curves in the figure show the scaled normal stresses. The data for these come from circular
cylinder wake experiments performed by Townsend [26].

7.1.2. Varyingω Implementation

A requirement for self-similarity is that the turbulence time scale be proportional to the
mean flow time scale. The former is given by 1/ω and is typically assumed constant across
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FIG. 11. Scaled experimental profiles for 2D plane wake. Mean velocity and shear stress data are from
Wygnanskiet al. [25], and normal stress data are from Townsend [26].

the flow [17], while the latter is characterized byδ/UD. The requirement is, therefore,

ω = ω∗(UD/δ), (46)

whereω∗ is a constant. Using this formω is a coefficient which varies with downstream
position, and it must be computed for each particle.

The procedure to computeω is straightforward. After multiplying the numerator and
denominator of Eq. (46) byUD and recognizing thatUD · δ is proportional to the velocity
flux defectF , this gives

ω = c1U
2
D/F . (47)

BothUD andF are computed directly from the particles using 1D kernel estimates. Defining
Û (n)

1 = UE − U ∗(n)
1 , these estimates are

UD
(
x∗(i )

1

) = 1〈
ρ
(
x∗(i )

1 , 0
)〉 N∑

n=1

m(n)Û (n)
1 K̂

(
x∗(i )

1 − x∗(n)
1 , h1

)
K̂

(
0 − x∗(n)

2 , h2
)
, (48)

F
(
x∗(i )

1

) = L2〈
ρ̄
(
x∗(i )

1

)〉 N∑
n=1

m(n)Û (n)
1 K̂

(
x∗(i )

1 − x∗(n)
1 , h1

)
, (49)

where

〈
ρ
(
x∗(i )

1 , 0
)〉 =

N∑
n=1

m(n) K̂
(
x∗(i )

1 − x∗(n)
1 , h1

)
K̂

(
0 − x∗(n)

2 , h2
)
, (50)

〈
ρ̄
(
x∗(i )

1

)〉 =
N∑

n=1

m(n) K̂
(
x∗(i )

1 − x∗(n)
1 , h1

)
, (51)
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andL2 is the height of the domain. Note thatF will incur some error since the height is
finite. This error decreases rapidly though asL2 is increased (it is negligible for the results
shown in this section).

The constantc1 can be related toω∗ through Eq. (41) in that the ratioc1/ω
∗ is just the

integral of f (η) over allη. Using the form off given in Eq. (43) this ratio is 2.06, and so
the final relationship forω is

ω = 2.06ω∗ U2
D/F. (52)

7.1.3. Boundary Conditions

Numerical simulation of the wake is performed in a rectangular domain, with inflow and
outflow boundary conditions implemented on the left and right sides, and periodic boundary
conditions used on the top and bottom. The inlet boundary condition requires (as an input)
profiles forŨ1, ũi u j , and〈P〉 (or 〈ρ〉). The choice of these is somewhat arbitrary. Ideally,
they should have the same general shape as the experimental profiles, yet still be sufficiently
different to show that they can evolve to ones that agree well with experiment. The scaled
inlet profiles forŨ1 andũi u j have been made piecewise linear functions, as Fig. 12 shows.
All three normal stresses have the same profile. Peak values for the scaled shear and normal
stresses were chosen to be 0.05 and 0.10, respectively.

Given these scaled profiles, onlyUE,UD, andδ need be specified at the inlet. The inlet
profile for pressure is determined using the steady-state cross-stream momentum equation:

〈P〉
〈ρ〉 + ũ2

2 = P0

ρ0
. (53)

Sinceũ2
2 is small relative to the other terms, the inlet profile for〈P〉 is nearly uniform. For

the outlet boundary condition the only flow quantity which must specified is the pressure,

FIG. 12. Specified inlet profiles (scaled) for 2D plane wake problem.
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and it is assumed constant and equal toP0. This is a reasonable assumption sinceũ2
2 is

approximately zero at the outlet.

7.1.4. Numerical Results

The simulation for which results will be presented was performed in a domain of length
L1 = 6.0 and heightL2 = 1.5. A length of 6.0 allows for sufficient evolution of the wake be-
yond the inlet and also leaves space to study profiles over a reasonable range of downstream
stations. The height of 1.5 is large enough so that profiles do not merge across the top and
bottom boundaries (a potential problem when using periodic boundary conditions on these
boundaries). The smoothing lengths (unnormalized) used in the simulation wereh1 = 1

8
andh2 = 1

16. A larger value can be used forh1 since variations in flow quantities are sig-
nificantly smaller in the streamwise direction. The number of particles initially positioned
(uniformly) in the domain was 1,180,000. Compared to a particle-mesh implementation, this
corresponds to a 48× 24 grid of cells, with about 1000 particles per cell. The initial mean
and fluctuating velocities for all particles were based on the inlet profiles. The simulation
was integrated out to timeT = 40.0 using a time step of 0.01. This time step allows sufficient
resolution of the turbulent time scale, that isω1t ¿ 1 for the range ofω in this problem. To
reduce statistical error, time-averaging was performed on all mean quantities of interest from
T = 15.0 (by which time all the particles initially in the domain had exited) untilT = 40.0.

At the inlet, the free-stream velocityUE was set to 0.6, the centerline velocity defectUD to
0.3, and the wake widthδ to 0.125. The cross-stream smoothing length of1

16 is adequate to
resolve the inlet profiles. Finally, the constantω∗ was set to 0.24. This value was selected
to make the computed peak shear stress match the experimental value.

Figure 13 compares scaled mean velocity profiles obtained using the particle code to
the experimental profile of Wygnanskiet al. The overall agreement across the wake is

FIG. 13. Scaled profiles of̃U1 for the 2D plane wake, withω∗ = 0.24. The simulation was performed using
1,180,000 particles and smoothing lengthsh1 = 1

8
andh2 = 1

16
. The fields have been time-averaged.
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FIG. 14. Scaled profiles of̃u1u2 for a 2D plane wake simulation with 1,180,000 particles and smoothing
lengthsh1 = 1

8
andh2 = 1

16
. The fields have been time-averaged.

very good. The only noticeable discrepancy is at the edge of the wake, where the particle
code slightly underpredicts the profile width. The 10 profiles plotted in the figure were
measured at streamwise positions ranging fromx1 = 3.0 to x1 = 5.7, and over this range
the self-similarity inŨ1 is clearly visible.

Scaled shear stress profiles are shown in Fig. 14. Once again they show excellent self-
similarity, and the scaled curve agrees well with the experimental data. The shear stress is
somewhat underpredicted at the edge to give a slightly narrower turbulent region, but this
is expected of the simplified Langevin model [17].

The normal stresses are plotted in Fig. 15. Compared to their initially isotropic state at
the inlet, the stresses do indeed evolve to reasonable profiles, and the scaled curves are
sufficiently close together to justify self-similarity. Although the agreement with exper-
imental data is not as good here as with the previous quantities, it is consistent with
past behavior of the simplified Langevin model. Plane wake computations performed by
Haworth and Pope [17] showed that this model, as well as numerous others, put too much
energy into the streamwise component, and thusũ2

1 is overpredicted. Figure 15 also shows
that the stresses do not decay to zero at the edge of the wake. This is purely a consequence of
bias in the particle simulation (and part of the reason whyN̄ is made large). Understanding
sources of bias in PDF computations was recently studied in [27].

Figure 16, the last in the group for this test problem, shows the spatial evolution of various
wake quantities including the centerline defect velocity, the wake width, omega, and the
edge velocity. In the downstream portion of the domain, bothUD andδ evolve close to their
expected rates:

UD(x1) ∼ (x1 − x0)
−0.5, (54)

δ(x1) ∼ (x1 − x0)
+0.5. (55)

Dashed lines in the figure are least-squares curvefits of this form obtained by fitting data
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FIG. 15. Scaled profiles of̃u2
i for the 2D plane wake, withω∗ = 0.24. The simulation was performed using

1,180,000 particles and smoothing lengthsh1 = 1
8

andh2 = 1
16

. The fields have been time-averaged.

in the rangex1 ∈ [3, 6]. (The same value ofx0 is used in both fits.) Of course,UD

and δ cannot be expected to show the proper evolution in the upstream portion of the
domain.

The edge velocity is plotted at the top of Fig. 16. For an incompressible flow this should
ideally remain constant. In the current simulation though, the density increases slightly with
downstream position which leads to the decay inUE. The majority of the decay is in the
upstream portion, where the density changes most rapidly, although the actual change inρ
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FIG. 16. Spatial evolution ofUE,UD, δ, andω for the 2D plane wake, withω∗ = 0.24. The simulation was
performed in a domain of length 6.0 and height 1.5 using 1,180,000 particles and smoothing lengthsh1 = 1

8
and

h2 = 1
16

.

is only about 1%. Over the region used for studying profiles (between the dotted vertical
lines), the variation inUE is less than half of one percent.

7.2. Hydrostatic Flows with Body Forces

The particle method’s ability to handle body forces has been studied through two static
test problems. In each of these, the effect of the body force is equivalent to a gravitational
force. The simulation evolves in time until a steady-state hydrostatic pressure distribution is
attained, and the resulting distribution is compared to the predicted theoretical distribution.

The two problems differ in the orientation of the force vector. In the first, a force per unit
mass of fixed magnitudeg is added in thex2 direction by modifying the evolution equation
for U ∗

2 :

dU∗
2 = − 1

〈ρ〉
∂〈P〉
∂x2

dt − · · · + g dt. (56)

The direction of the force vector is vertical and always points towards the horizontal line
passing through the center of the domain,x2 = 0. This divides the domain into two sym-
metrical halves, with the hydrostatic pressure distribution being homogeneous inx1. In the
second test case, the force vector retains the same magnitude, but it is set to always point
radially towards the center of the domain (the equation forU ∗

1 is also modified in this case).
The resulting pressure distribution is axisymmetric.

In both cases the hydrostatic pressure distributions are nonlinear since the fluid is com-
pressible. At steady state the mean momentum equation inx2 for the horizontal body force
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problem is

0 = − 1

〈ρ〉
d〈P〉
dx2

− g. (57)

Together with the equation of state, Eq. (37), the solution to this ODE is

〈ρ(x2)〉 = ρ∗
[
1 − (γ − 1)

γ

g|x2|
P∗/ρ∗

]1/(γ−1)

for |x2| ≤ L/2, (58)

with ρ∗ andP∗ the density and pressure atx2 = 0 (these are found given the total mass of
fluid in the domain). The solution for the axisymmetric case is identical, except thatx2 is
replaced by the radial distancer .

Figure 17 compares the particle code hydrostatic pressure distributions for the two cases to
the theoretical distributions for the choiceg= 5.0. In both cases the agreement is excellent.
To perform each simulation, 128,000 particles were uniformly distributed with zero velocity
in the unit square domain. The total mass of the particles was chosen to be 1. Using a
normalized smoothing length of116, the simulation was then evolved in time with a time
step of 0.01 until a stationary pressure distribution was reached at timeT = 10.0. Time
averaging was subsequently done on the pressure field untilT = 20.0. The number of
Fourier modes used to approximate each 1D kernel was chosen to be four, and eight modes
were used to approximate the kernel derivative. Throughout the simulation, the turbulence
model was kept on as a means to speed convergence and keep random fluctuations small,
since it explicitly adds dissipation through the drift terms. Apart from this contribution,

FIG. 17. Hydrostatic pressure distributions for the 1D and axisymmetric body force test cases as predicted
from a simulation using 128,000 particles and normalized smoothing lengthsh̄1 = h̄2 = 1

16
.
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the method has very little dissipation and, therefore, would require much longer to reach a
stationary state.

7.3. Unsteady Compressible Flow Problem

A third sample flow problem which has been studied highlights some of the effects of
pressure on the flow evolution. This flow has an initial condition consisting of a central
square region of isotropic turbulent fluid moving with a constant horizontal mean velocity
UH , which is surrounded by ambient fluid. The density is initially constant and equal to 1
everywhere. Although this is a less physical problem than the 2D wake, it is nevertheless
interesting: the flow is fully unsteady and inhomogeneous, it contains compression and
expansion waves, and it features a pair of decaying eddies. All of these phenomena are
exhibited in the simulation results shown in Fig. 18.

For this simulation, the size of the central moving region was set to1
4 by 1

4, and the
domain was chosen to be the unit square. The value ofUH was set to 1.0, and the turbulence
intensity in the moving fluid was set at 10% the speed of sound. The smoothing lengthh̄ for
the simulation was made 1/16, and the number of particlesN was chosen to be 512,000. The
latter was made quite large so as to keep statistical fluctuations and bias small; the number
of particles contributing to each kernel estimate is roughly 8000. Four Fourier modes were
used to approximate each 1D kernel, while eight modes were used for the kernel derivative.
Using a time-step of 0.005, the solution throught = 2.5 was obtained in slightly over 9 h on
an IBM RS/6000 Model 590. This is quite reasonable given the magnitude of the simulation.

The top row of plots shows the evolution of pressure, with solid lines indicating compres-
sion and dashed lines indicating expansion. Att = 0.02, the moving fluid is just beginning
to form expansion and compression waves to the left and right of center, respectively. The
compression wave shapes itself into a well-defined arc as it propagates through the domain,

FIG. 18. Evolution of pressure (top) and vorticity (bottom) for the unsteady compressible flow problem.
Five hundred twelve thousand particles were used in the simulation, with normalized smoothing lengths equal
to 1

16
.
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whereas the expansion wave fills most of the left half of the domain. Periodic boundary
conditions are used in both coordinate directions, so that at later times these waves come
into contact again and interact.

The bottom set of plots show vorticity as computed from the mean velocity field.
Solid/dashed lines show positive/negative vorticity, respectively. A pair of eddies forms
in the wake of the moving central region as fluid from above and below rushes in to fill the
low pressure area. Att = 0.5 this behavior is evident. The eddies continue to slowly drift
to the right before eventually decaying, as the final bottom two contour plots show.

8. VARIATIONS/EXTENSIONS TO ALGORITHM

8.1. Fourier–Taylor Variation

The algorithm described in Section 3 was formulated by expanding each 1D kernel in
a Fourier series. A variation of this approach is now described in which only one kernel
is expanded. This variation, referred to by the author as “Fourier–Taylor,” was already
mentioned in reference to Fig. 9 of Section 5.

As in Section 3, the approach is best explained by using the example of calculating mean
densities in a subregionR. Expanding the kernel inx1, for example, gives

〈
ρ
(
x∗(i )

)〉
N,h,M

=
∑

x∗(n)∈S

m(n)

 M∑
p=0

â1p cos

{
2πp

(
x∗(i )

1 − x∗(n)
1

)
`1

} K̂
(
x∗(i )

2 − x∗(n)
2 , h2

)
,

(59)

which becomes (after manipulation)

〈
ρ
(
x∗(i )

)〉
N,h,M =

M∑
p=0

â1p

[
ci

p

( ∑
x∗(n)∈S

m(n)cn
pK̂

(
x∗(i )

2 − x∗(n)
2 , h2

))

+ si
p

( ∑
x∗(n)∈S

m(n)sn
pK̂

(
x∗(i )

2 − x∗(n)
2 , h2

))]
. (60)

For each modep, the quantities inside the large parentheses involve computing sets of
cosine- and sine-weighted kernel estimates for all particlesi with x∗(i ) ∈ R. Computation-
ally this is equivalent to calculating a set of 1D kernel estimates and, thus, theO(N) Taylor-
series algorithm described in [10] can be used to obtain them. Repeatedly using the Taylor-
series algorithm for each of theM modes results inO(N M) computational work overall.

In this variation the definitions of the regionsRandSare slightly modified (the rectangular
domainD is assumed to be the same). With the Fourier expansion done inx1, the regionR
is a vertical strip extending the full height of the domain and having widthw1. Likewise,
S is a similar vertical strip, but of width 2h1 + w1. Both are centered horizontally about
x1 = xR

1 .
The Fourier–Taylor variation has some unique advantages over the Fourier–Fourier

method, one being that the work per particle in 2D scales only asO(M) as opposed to
O(M2). This is evident in Fig. 9, which shows that the increase in work for the Fourier–
Fourier algorithm as a result of doubling the number of modes is about twice the in-
crease for the Fourier–Taylor algorithm. For values ofM used in actual 2D simulations
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though, the Fourier–Fourier algorithm is currently more cost-effective due to less over-
head.

A more important advantage of the Fourier–Taylor variation involves computation of
gradients. In SPH gradients are calculated by direct differentiation of the kernel, for example,

∂

∂x2

〈
ρ
(
x∗(i )

)〉
N,h =

∑
x∗(n)∈S

m(n) K̂
(
x∗(i )

1 − x∗(n)
1 , h1

) ∂

∂x2
K̂

(
x∗(i )

2 − x∗(n)
2 , h2

)
. (61)

In the Fourier–Fourier implementation, convergence of relative error with respect toM
will therefore be slowest for gradients. With the Fourier–Taylor algorithm this reduction
in scaling is ideally eliminated if the Fourier expansion is done on the kernelnot being
differentiated. This behavior is confirmed in Fig. 19 which plots results of a numerical test
studying convergence of 2D relative error for the quantity〈∂ρ/∂x2〉 using both Fourier–
Fourier and Fourier–Taylor implementations. To make the difference in convergence rates
more distinguishable, the error in both curves is scaled byM3. The curve for the Fourier–
Fourier implementation is therefore nearly horizontal as expected, while the curve for the
Fourier–Taylor implementation continues to decrease withM , the measured slope being
about−0.8.

The numerical test, similar to the one performed for Fig. 5, was done using a smooth-
ing length h = 1

2, and 262,144 particles deterministically positioned in the unit square
domain according to a predefined density field. Mean density gradient estimates based on
∂ K̂ ′(x , h, `,M )/∂x were calculated using both the Fourier–Fourier and Fourier–Taylor
algorithms, and these were compared to the values obtained using∂ K̂ (x, h)/∂x to obtain
the relative errors plotted in the figure. The number of modesM was varied between 4 and
64, while the period was kept fixed at` = 3h.

FIG. 19. Relative error in〈∂ρ/∂x2〉 for a 2D static test case. Scalings shown for both Fourier–Fourier and
Fourier–Taylor implementations.
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Figure 19 also shows that for values ofM used in simulations (M ≤ 10, typically), the
relative error for the gradient is nearly an order of magnitude less using the Fourier–Taylor
implementation as compared to the Fourier–Fourier implementation. In problems where
relative error must be kept small, the Fourier–Taylor approach is thus ideal.

8.2. Extension to 3D

Extension of the algorithm to 3D is straightforward, with two possible choices. Still
assuming a tensor-product kernel, each of the three 1D kernels can be expanded in a Fourier-
series to give anO(N M3) method. As in 2D,M need only be finite, provided that the periods
in each direction scale with the smoothing lengths. The other choice is to expand two of
the three kernels and make use of theO(N) Taylor-series algorithm. The overall work then
scales asO(N M2). At present these approaches have been not yet implemented, but no
difficulties are foreseen.

8.3. Extension to Isotropic Kernels

As presented in Section 3, theO(N) algorithm is applicable to tensor-product kernels. For
the combined PDF/SPH calculations presented in this paper, this requirement is completely
acceptable. In other applications such as astrophysical simulations, such a requirement may
not be satisfactory. In fact, virtually all SPH simulations use kernels which are isotropic—
they are solely a function of the Euclidean distance between particles. This section explains
an approach which extends theO(N) algorithm to include isotropic kernels.

The key to this approach is determining a proper set of basis functions which is com-
patible with the separation property, Eq. (23). An isotropic kernel of the formK (r ) can be
expanded in powers ofr using, for example, polynomial sets such as Legendre or Chebyshev
polynomials. But the definition of the Euclidean distancer is such that only even powers
of r are amenable to separation. This becomes clear through a simple example. Given that
the distance in 2D between particlesi andn is ri,n = [(xi − xn)

2 + (yi − yn)
2]1/2, consider

calculating the pair of quantities

S(1)
i =

N∑
n=1

ri,n, S(2)
i =

N∑
n=1

r 2
i,n (62)

for i = 1 · · · N. The former must be computed using anO(N2) direct summation approach,
whereas the latter can be expanded and separated into

S(2)
i = N

(
x2

i + y2
i

) − 2xi

N∑
n=1

xn − 2yi

N∑
n=1

yn +
N∑

n=1

xnyn (63)

and can, therefore, be obtained inO(N) time. This is true for all even powers ofr. Con-
sequently, if the isotropic kernel is expanded in a finite polynomial series inevenpowers
of r,

K (r, h) =
M∑

p=0

apr 2p, (64)
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then computation of kernel estimates can be done inO(N) time. Such expansions readily
exist for symmetric kernels such as Eq. (17).

Implementation of this approach is identical to the Fourier-series approach. The kernel
expansion is chosen to be valid over a finite interval of length` =O(h), and kernel esti-
mates are sequentially computed in rectangular (or possibly even hexagonal) subregionsR
surrounded by corresponding support regionsS. Relative error between the approximated
kernel estimates and the exact kernel estimates will decrease as the number of termsM in
the expansion increases, and the rate of convergence will depend on the smoothness of the
kernel. The computational work increases quickly, however, asM is made bigger, since the
number of terms in the polynomial expansion ofr 2p grows exponentially withp.

8.4. Parallel Implementation

The Fourier-series algorithm is well suited to implementation on scalable parallel com-
puting architectures using the approach of mesh partitioning [28], also known as domain
decomposition. In this approach the flow domain is divided into multiple subdomains, each
of which is assigned to a single processor or node. Each node subsequently performs work
on only its subset of computational cells and the particles in those cells. In this way both
the particle and grid work is divided among the nodes.

To illustrate this in the current context, consider again the example given at the end of
Section 3 which lists the sequence of computational steps that are performed to obtain
the mean densities inO(N) time. Assume that the domain has been subdivided into local
groups of one or more computational cells and that each group is assigned to one node.
The first step, Eq. (28), involves computing sums within computational cells. Since this
only involves data local to each cell, each node can perform this work without having to
communicate with other nodes. The second step, Eq. (29), is less intensive computationally
than the first, but it does require communication between nodes. However, the amount of
communicated data is small since it only consists of cell quantities. The third and final
step again involves only local data and can, therefore, be performed independently by each
node. Thus, computation of mean fields using this parallel implementation of the algorithm
is expected to be quite efficient overall.

Additional communication would be required between time steps as the particles cross
node boundaries, and this is common to all parallel implementations based on mesh parti-
tioning. Although this communication is expected to dominate other communication, it can
be significantly reduced by aligning the node boundaries with the mean-flow streamlines.

9. CONCLUSIONS

This paper has presented a PDF-based Monte Carlo particle method for simulating two-
dimensional compressible turbulent flows. While most PDF methods are implemented using
a particle-mesh approach, the particle method described here is unique in that it incorporates
the kernel estimation techniques of SPH to obtain a grid-free implementation. The main
benefit of using SPH is that it allows a general and robust treatment of the mean pressure
within the PDF framework; using kernel estimates, the pressure (and all other required
quantities) is obtained directly from the particles.

This combination of SPH with the PDF method has also introduced computational chal-
lenges. These have been successfully addressed, however, with the development of an
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efficient algorithm for computing two-dimensional SPH kernel estimates. The algorithm
described in this paper is based on Fourier-series expansions of the SPH kernel, and for a
simulation withN particles its computational work scales purely asO(N). Consequently,
simulations for a wide variety of flows can be performed in reasonable time. The algorithm
is also shown to be easily extendible to three dimensions and applicable to isotropic kernels.
Furthermore, its implementation on scalable parallel computing architectures is shown to
be straightforward and is expected to be efficient.

Two types of numerical errors introduced by the finite series expansion have been pre-
sented and studied. Relative error, a measure of how well kernel estimates obtained using
the Fourier-series algorithm compare to the original SPH estimates, was shown to scale as
(Mh/`)−4 for the kernel used in this study. Spatial error, the deterministic error caused by
using a finite smoothing length, was shown to converge for the new algorithm for allM ,
provided` = O(h). In both cases, the errors scale as expected and can be kept negligibly
small using modest computing requirements.

The particle method has been used to simulate a wide variety of 2D flows, including a
stationary self-similar plane wake, hydrostatic flows under the influence of body forces,
and an unsteady flow featuring compression/expansion waves and a pair of decaying vor-
tices. The range in scope of these problems demonstrates the robustness of the method.
Furthermore, the plane wake problem shows that the method can be used to accurately
simulate a flow of practical importance. In the wake simulation, the turbulent frequency
varies with downstream position and is computed from the particles. Beginning from an
arbitrary inlet condition, the mean velocity and Reynolds stresses attain self-similar profiles
which compare favorably with experimental data.
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